
IMPROVING THE AGGREGATING ALGORITHM FOR REGRESSION
Steven Busuttil, Yuri Kalnishkan and Alex Gammerman

Department of Computer Science,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, UK.
{steven,yura,alex}@cs.rhul.ac.uk

ABSTRACT
Kernel Ridge Regression (KRR) and the recently de-
veloped Kernel Aggregating Algorithm for Regression
(KAAR) are regression methods based on Least Squares.
KAAR has theoretical advantages over KRR since a bound
on its square loss for the worst case is known that does not
hold for KRR. This bound does not make any assumptions
about the underlying probability distribution of the data. In
practice, however, KAAR performs better only when the
data is heavily corrupted by noise or has severe outliers.
This is due to the fact that KAAR is similar to KRR but
with some fairly strong extra regularisation. In this paper
we develop KAAR in such a way as to make it practical for
use on real world data. This is achieved by controlling the
amount of extra regularisation. Empirical results (including
results on the well known Boston Housing dataset) suggest
that in general our new methods perform as well as or better
than KRR, KAAR and Support Vector Machines (SVM) in
terms of the square loss they suffer.

KEY WORDS
Machine Learning, Regression, Least Squares, Kernels

1 Introduction

In regression we are interested in finding a mathematical
relationship between a signal, which can be one or more
independent variables, and its outcome1. In the simplest of
models this relationship is taken to be linear but nonlinear
relationships are common in nature. Once this relationship
is established, it is possible to predict the outcomes of un-
seen signals.

The first solution to this problem was that of Least
Squares which finds the line (or hyperplane) that fits the
data with minimum squared differences, known as square
losses. This method however, can fit the training set too
well (known as overfitting) and may not generalise well to
unseen data. This is especially true if the data is corrupted
by noise. Ridge Regression (RR) [1] attempts to balance
the goodness of fit of the hyperplane with its complexity.
This is known as regularisation and results in a solution
that is not necessarily optimal on the training data but usu-
ally generalises better. RR works very well on real world

1In other literature, outcomes are also called labels/targets, while sig-
nals are also called examples/instances.

data and is still very popular today. The Aggregating Algo-
rithm for Regression (AAR) [2] (see also the Vovk-Azoury-
Warmuth algorithm in [3]) is a relatively new method and
is shown to be only a little worse than any linear predictor
in the online mode of learning. This method can be natu-
rally applied to the batch (offline) case, which is our main
focus in this paper.2 It happens that AAR is similar to RR
but with some extra regularisation added.

RR and AAR can be formulated in dual variables
(see [4] and [5] respectively), where all the data appears
in dot products which are then replaced by kernels. By def-
inition, kernels are dot products in some feature space. This
means that a hyperplane is found in feature space that cor-
responds to a nonlinear relationship in input space. We de-
note the kernel versions of these methods by Kernel Ridge
Regression (KRR) and the Kernel Aggregating Algorithm
for Regression (KAAR).

For KAAR we have a general worst case upper bound
on its loss (in the online context) that does not hold for
KRR [2, 5]. KRR is optimal only under some probabilistic
assumptions [6]. KAAR’s bound does not make any as-
sumptions on the underlying probability distribution of the
data, which makes it applicable to a much wider group of
datasets. In particular, this bound does not require the data
to be independently identically distributed (i.i.d.). In many
practical applications i.i.d. is unrealistic to assume. Theo-
retically, this implies that KAAR should suffer smaller loss
than KRR in general. However, from our empirical analy-
ses we found that in most cases KAAR’s regularisation is
too strong and results in big losses being suffered. On the
other hand, sometimes KRR’s regularisation is not strong
enough and this results in its predictions fluctuating a lot.

In Section 3 we introduce new methods, principally
Iterative KAAR (IKAAR) and Controlled KAAR (CK-
AAR), which modify KAAR in such a way as to be able
to control the amount of extra regularisation, the choice of
which should depend on the data at hand. In Section 4
we report their empirical performance on two real world
datasets. From these results we conclude that in general
our new methods perform as well as or better than KRR,
KAAR and Support Vector Machines (SVM) [7, 8] in terms
of the square loss they suffer.

2However, all the methods described in this paper can be used for both
online and batch modes of learning.

2 Background

Regression can be defined by the following problem. Given
a set of ` signal-outcome pairs (xi, yi) ∈ Rm × R, and
a new signal x`+1, we are required to output a predic-
tion γ`+1 ∈ R that approximates the true outcome y`+1

of x`+1. Note that as per convention, all the vectors in this
paper are column vectors. The most commonly used mea-
sure of goodness of a prediction is the square loss (y−γ)2,
where a smaller value means a better prediction. Let us
model the data by the linear equation

yi = 〈w,xi〉+ εi, (1)

where w ∈ Rm and εi ∈ R is some noise. Our aim is to
find a solution to (1) (i.e., a wL) that minimises the overall
sum of square losses of the predictions on the given data

LL =
∑̀
i=1

(yi − 〈wL,xi〉)2. (2)

A method to find wL, known as the method of Least
Squares, was derived independently by Legendre and
Gauss in 1805 and 1809 respectively. It translates to solv-
ing the system of linear equations wL = (X′X)−1X′y,
where X = (x1, . . . ,x`)

′ and y = (y1, . . . , y`)
′.

2.1 Ridge Regression

Least Squares runs into problems when some features in
X are highly correlated because the matrix X′X becomes
close to singular, resulting in unstable solutions. Ridge Re-
gression (RR), first introduced to statistics by Hoerl [1],
differs from Least Squares in that its objective is to min-
imise

LR = α‖wR‖2 +
∑̀
i=1

(yi − 〈wR,xi〉)2, (3)

where α is a fixed positive real number. Finding the solu-
tion now involves calculating wR = (αI + X′X)−1X′y,
where I is the identity matrix. Apart from stabilising the
solution (since α > 0 the matrix (αI + X′X) is positive
definite and therefore nonsingular), this technique also in-
cludes regularisation in that it favours a wR with smaller
elements. This reduces the complexity of the solution, de-
creasing the risk of overfitting the training data, and conse-
quently generalises better.

2.2 The Aggregating Algorithm for Regression

The Aggregating Algorithm (AA) [9] is a technique that
predicts using expert advice. This means that AA observes
the next signal in a sequence and also the predictions of a
(possibly infinite) pool of experts. It then merges the ex-
perts’ predictions and outputs its own prediction, which is
in a sense optimal. AA was applied to the problem of lin-
ear regression resulting in the Aggregating Algorithm for

Regression (AAR), which merges all the linear predictors
that map signals to outcomes [2]. In this case AAR is opti-
mal in the sense that the total loss it suffers is only a little
worse than that of any one particular linear function. More-
over, AAR’s bound does not make any assumptions on the
probability distribution of the data. It turns out that AAR
is similar to RR but with the signal-outcome pair (x`+1, 0)
added to its training set, where x`+1 is the new signal for
which a prediction is to be made. This makes predictions
shrink towards 0, with the goal of making them even more
resistant to overfitting (it is assumed that the mean of the
outcomes is 0). AAR aims to find a solution wA that min-
imises

LA = α‖wA‖2 + 〈wA,x`+1〉2 +
∑̀
i=1

(yi − 〈wA,xi〉)2. (4)

The AAR solution to the regression problem is therefore
wA = (αI + X̃

′
X̃)−1X̃

′
ỹ, where X̃ = (X′,x`+1)′ and

ỹ = (y′, 0)′.

2.3 Kernel Methods

The use of RR and AAR in the real world is limited since
they can only model simple linear dependencies. The ker-
nel trick (first used in this context in [10]) is now a widely
used technique which can make a linear algorithm oper-
ate in feature space without the inherent complexities. A
kernel function k takes two vectors and returns their dot
product in some feature space, k(xi,xj) = 〈φ(xi), φ(xj)〉,
where φ is a (nonlinear) transformation to feature space.
Usually the mapping φ is not performed explicitly, in fact
it is not even required to be known. For a function to
be a kernel it has to be symmetric, and for all ` and all
x1, . . . ,x` ∈ Rm, the kernel matrix K = (k(xi,xj))i,j ,
i, j = 1, . . . , ` must be positive semi-definite (have non-
negative eigenvalues).

Through kernel functions it is therefore possible to
perform linear regression in feature space which would
be equivalent to performing nonlinear regression in input
space. Accordingly, RR and AAR have been reduced into
a formulation known as dual variables (see [4] and [5] re-
spectively), where all the signals appear only in dot prod-
ucts. This makes transforming the linear models into non-
linear ones simply a matter of replacing the dot products
with a kernel function. The new methods, which we shall
call Kernel Ridge Regression (KRR) and the Kernel Ag-
gregating Algorithm for Regression (KAAR), respectively
calculate the prediction γ for a new example x`+1 as fol-
lows:

γKRR = y′(αI + K)−1k, (5)

where K = (k(xi,xj))i,j , i, j = 1, . . . , `, and k =
(k(xi,x`+1)), i = 1, . . . , `, and,

γKAAR = ỹ′(αI + K̃)−1k̃, (6)

where ỹ = (y′, 0)′, K̃ = (k(xi,xj))i,j , i, j =

1, . . . , ` + 1, and k̃ =
(
k′, k(x`+1,x`+1)

)′
.

3 Methods

In [2, Theorem 1] a worst case upper bound on the loss
of the Aggregating Algorithm for Regression (AAR) is de-
rived. This bound essentially compares the cumulative loss
of AAR in the online mode against the loss of the best lin-
ear predictor. A similar bound is also given for the more
general kernel case (KAAR) in [5]. It is shown in [2, The-
orem 3] that this bound does not hold for Ridge Regres-
sion (RR), therefore AAR has a better theoretical worst
case performance bound than RR. On the other hand RR
can be shown to be a Bayesian method (see, for exam-
ple, [6, Section 10.3]). This means that under certain proba-
bilistic assumptions on the data, RR has optimal properties
on average. Although we cannot realistically expect these
assumptions to hold for real world datasets, RR is known
to perform very well in practice. Moreover, through a thor-
ough empirical analysis it became evident that many times
KAAR’s predictions are overly rigid while KRR’s predic-
tions sometimes fluctuate too much. It was also observed
that occasionally a better prediction would be somewhere
in between those of KRR and KAAR. As we saw in Sec-
tion 2, KRR and KAAR are rather similar from a computa-
tional perspective. Is it possible therefore to combine these
two methods to give a new method that in general is more
accurate than both? In this section we present three new
methods that attempt to achieve this.

3.1 Simple Convex Combination

One of the simplest ways of combining KRR and KAAR
is to take a convex combination of their predictions. This
new ‘method’, which we have dubbed KOKO makes its
predictions as follows:

γKOKO = (1− θ)γKRR + θγKAAR,

where θ is a scalar from the interval [0, 1].

3.2 Iterative KAAR

As we saw in Section 2.2, KAAR is equivalent to KRR
with the signal-outcome pair (x, 0) added to its training
set, where x = x`+1 is the new signal. Having 0 as
the signal’s outcome added to the training set pushes the
prediction towards 0 and is what makes KAAR’s predic-
tions so rigid. In order to alleviate this we propose a new
method, the Iterative Kernel Aggregating Algorithm for
Regression (IKAAR). In its first iteration, IKAAR is equiv-
alent to KAAR in that it adds the pair (x, 0) to its training
set. This produces the prediction γKAAR. However, in its sec-
ond iteration, IKAAR replaces the extra pair in its training
set with a new pair (x, γKAAR). This produces another pre-
diction that in turn is used to replace γKAAR and be added
to the training set to make a new prediction. This proce-
dure can be repeated an arbitrary number of times, result-
ing in a sequence of IKAAR predictions for the same sig-
nal. We will denote these predictions by γ

(n)
IKAAR where the

index (n) denotes the iteration number. For clarity of nota-
tion let γ(n) = γ

(n)
IKAAR. We define IKAAR more formally as

follows:
γ(n) = ỹ(n) ′(αI + K̃)−1k̃, (7)

where γ(0) = 0, n ≥ 1, and ỹ(n) =
(
y′, γ(n−1)

)′
. Note

that in Section 3.4 we give an explicit formula that com-
putes γ(n) directly for any n.

Theorem 3.1. For any signal, IKAAR’s predictions start
from the KAAR prediction and converge towards that of
KRR as the number of IKAAR iterations approaches infin-
ity.

Proof. It follows from IKAAR’s definition that the first
prediction γ(1) is equivalent to KAAR’s prediction. We
will now show that IKAAR’s predictions for any signal
converge towards that of KRR as n approaches infinity. We
can open up (7) in the following way:

γ(n) =
[

y
γ(n−1)

]′ [
K + αI k

k′ k(x,x) + α

]−1

×
[

k
k(x,x)

]
. (8)

From this equation it is clear that we are modifying γ(n−1)

to get γ(n). We shall show that this transformation of
γ(n−1) can be characterised by the linear equation

γ(n) = sγ(n−1) + c, (9)

where s, c ∈ R. If we manage to show that 0 ≤ |s| < 1
then it would follow from the Banach fixed point theorem
that IKAAR’s predictions converge to a fixed point r, such
that r = sr+c. Therefore, as n →∞, then γ(n−1) → γ(n)

and γ(n) → r.
If we do the inversion in (8) by partitioning (see

Lemma A.1), we get

γ(n) =
[

y
γ(n−1)

]′ [
P Q
R S

]−1 [
Q

k(x,x)

]
=

(
R̃Q + S̃k(x,x)

)
γ(n−1)

+
(
y′P̃Q + y′Q̃k(x,x)

)
, (10)

where P = K + αI, Q = R′ = k, and S = k(x,x) +
α (in this case all the necessary inverses exist). Making
substitutions for P̃, Q̃, R̃, and S̃ in (10) we get,

s =
k(x,x)− k′(K + αI)−1k

k(x,x)− k′(K + αI)−1k + α
, (11)

c = y′(K + αI)−1k(1− s). (12)

We will now proceed to show that s is always in the
interval [0, 1). Since by definition α > 0, we only need to
show that k(x,x) ≥ k′(K+αI)−1k to reach our goal. We
will first show this for the linear kernel (the dot product)

and subsequently we will generalise the result for the non-
linear kernel case. Therefore, for the linear kernel we have
to show that for every x the following holds:

x′x ≥ (Xx)′(XX′+αI)−1Xx = x′X′X(X′X+αI)−1x.
(13)

In order to do this, we will first reduce (13) to a simpler
form. Since X′X is symmetric it can be diagonalised so
that X′X = VΛV′, where the columns of the unitary ma-
trix V are the eigenvectors of X′X and Λ is the diagonal
matrix made up of the corresponding eigenvalues λi. Since
V is a unitary matrix, V−1 = V′ and V′V = VV′ = I.

Performing the substitution x = Vz in (13) is the
same as considering it in the orthogonal basis formed by the
eigenvectors of X′X. Therefore, showing that (13) holds is
equivalent to proving that (Vz)′Vz ≥ (Vz)′X′X(X′X +
αI)−1Vz. This reduces to proving that z′z ≥ z′Λ(Λ +
αI)−1z. Since X′X is positive semi-definite all its eigen-
values are nonnegative. Therefore all the elements in the
diagonal matrix Λ(Λ + αI)−1 are 0 ≤ λi

λi+α < 1. It fol-
lows that z′z > z′Λ(Λ+αI)−1z, which means that x′x >
x′X′X(X′X + αI)−1x. We have just proved the linear
case. The nonlinear kernel case follows from the linear case
in the limit (because of a finite-dimensional approximation
similar to [5]), therefore k(x,x) ≥ k′(K + αI)−1k.

We have just shown that 0 ≤ s < 1, therefore γ(n)

converges to some point r. In the definition of c (see (12)),
the term y′(K+αI)−1k is in fact KRR’s prediction, there-
fore c = γKRR(1−s). This means that (9) can be rewritten as

γ(n) = sγ(n−1) + γKRR(1− s).

At fixed point r, we have r = sr + γKRR(1 − s), implying
that r = γKRR, which ends our proof.

3.3 Controlled KAAR

KAAR’s predictions are so rigid because it tries to min-
imise the value of the predictions themselves (see the sec-
ond term in (4)). In our new method, the Controlled Kernel
Aggregating Algorithm for Regression (CKAAR), we try
to control this behaviour by adding a coefficient to this sec-
ond term such that our objective is to minimise

LC = α‖wC‖2+β〈wC,x`+1〉2+
∑̀
i=1

(yi−〈wC,xi〉)2, (14)

where β ≥ 0. It is immediately clear that when β = 0
CKAAR should behave exactly like KRR and conversely
like KAAR when β = 1. When β is somewhere in be-
tween CKAAR will output predictions that are not as rigid
as those of KAAR and do not fluctuate as much as those
of KRR, whereas when β > 1, CKAAR will provide even
more regularisation than KAAR does.

Letting w = wC, we can express (14) in matrix nota-
tion to give LC = α(w′w) + ỹ′ỹ − 2w′X̂

′
ỹ + w′X̂

′
X̂w,

where X̂ = (X′,
√

β x`+1)′ and ỹ = (y′, 0)′. If we differ-
entiate this with respect to w, divide throughout by 2 and

set it equal to 0 we get 1
2

∂LC
∂w = αw− X̂

′
ỹ + X̂

′
X̂w = 0.

This means that the CKAAR solution (wC) to the regres-
sion problem for a new example x`+1 is

wC = (αI + X̂
′
X̂)−1X̂

′
ỹ.

The solution we have just derived is for the linear case only.
To handle the nonlinear case we follow [5] to formulate
our solution in dual variables so that it can be used with
kernels. The kernel version of CKAAR makes a prediction
for a new signal x = x`+1 in the following way:

γCKAAR = ỹ′(αI + K̂)−1k̂,

where k̂ =
(
k(x1,x), . . . , k(x`,x),

√
β k(x,x)

)′
and

K̂ =

k(x1,x1) . . . k(x1,x`)

√
β k(x1,x)

...
. . .

...
...

k(x`,x1) . . . k(x`,x`)
√

β k(x`,x)√
β k(x,x1) . . .

√
β k(x,x`) β k(x,x)

Clearly, (αI+K̂) is still positive definite since K̂ is a Gram
matrix of vectors in Hilbert space and one of them happens
to be multiplied by

√
β.

3.4 Summary and comparison

Below are formulations of the predictions for x made by
KAAR, KOKO, IKAAR and CKAAR in terms of KRR’s
prediction γKRR, where z = k(x,x)− k′(K + αI)−1k.

γKAAR = γKRR

(
1− z

z + α

)
γKOKO = γKRR

(
1− θ

(
z

z + α

))
, 0 ≤ θ ≤ 1

γIKAAR = γKRR

(
1−

(
z

z + α

)n)
, n ≥ 1

γCKAAR = γKRR

(
1− z

z + α/β

)
, β ≥ 0

γKRRT = γKRR (1− t) , 0 ≤ t ≤ 1

These formulations (mainly obtained by using Lemma A.1)
give us computational advantages and they also allow us
to understand our new methods better. It is immediately
clear that all these methods ‘scale down’ (in different ways)
KRR’s prediction towards 0 (recall that α > 0, that we have
shown that z ≥ 0, and that we assume that the mean of the
outcomes is 0) in an effort to combat noise and outliers.
Unlike KAAR, our new methods KOKO, IKAAR and CK-
AAR have an extra ‘mixture’ parameter which controls (or
can completely remove) this extra regularisation. This for-
mulation of IKAAR makes it clear that the convergence is
exponential and that there is no iterative procedure to be
solved, since it computes the prediction for any iteration
directly. We have also included another method, dubbed
KRRT to compare our methods against. KRRT simply
scales down KRR’s prediction using a scalar, whereas our
methods take in consideration the signal for which the pre-
diction is being made.

4 Experimental Results

Our experimentation method is similar to that of [11] in that
for each dataset we run experiments on 100 different ran-
dom permutations of itself. The best parameters for each
method are chosen using validation and then the experi-
ments are rerun with these parameters fixed. In this sec-
tion we report the average of the mean square losses per
run (MSE) of the methods mentioned in this paper and also
that of a Support Vector Machine (SVM) (see [7, 8, 12]).
We also show the statistical significance (according to
the Wilcoxon Signed Rank Test (WSRT); see, for exam-
ple, [13]) of the difference in losses of all methods and
those of KRR and SVM, which is the probability that it
happens by chance (known as a p-value). We do not re-
port the p-values as compared to KAAR since these were
always very small.

The results achieved on two well known real world
datasets, the Boston Housing [14] and Gaze [15] datasets,
are in Table 1. For clarity, p-values that are greater than
or equal to 0.05 are prefixed with an asterisk (∗) meaning
that the differences are not statistically significant (by con-
vention). We also ran experiments on the artificial Mex-
ican Hat dataset and on other real world datasets includ-
ing Abalone, Auto-MPG, Auto-Price, Relative CPU Per-
formance, Servo and Wisconsin Prognostic Breast Cancer
datasets (all from [14]). These are not included in this pa-
per due to space limitations, however, all the results ob-
tained are similar to the ones reported here and support our
conclusions. For our experiments we used four kernels: a
polynomial kernel, a spline kernel, an ANOVA spline ker-
nel, and a Gaussian RBF kernel (see, for example, [8]).

5 Discussion and Conclusion

To determine the relative performance of methods we take
in consideration their mean square losses and whether the
differences are statistically significant or not. In the results
reported here it is clear that CKAAR performs best, suffer-
ing smaller losses than KRR, KAAR and SVM. The per-
formance of IKAAR is similar but not as good, while the
performance of KOKO, the simple convex combination of
KRR and KAAR, is slightly worse and only a little better
than KRR. It is understandable that CKAAR and IKAAR
perform better than KOKO, since they have a better theo-
retical motivation. KRRT, the ‘control’ method that scales
down KRR’s prediction by a fixed scalar does not offer any
advantages and is more or less equivalent to KRR. This
indicates that the scaling done by our methods, which de-
pends on the signal for which a prediction is being made,
is effectively what gives them their advantage in perfor-
mance. These results (and others not reported here) suggest
that our new methods IKAAR and in particular CKAAR, in
general suffer a smaller or equal amount of loss than KRR,
KAAR and SVM.

One disadvantage of our methods (compared to KRR
but not SVM) is that a value for an extra parameter has to

be chosen. In our experiments we did this by using vali-
dation, as we did for all the other parameters. Future work
may concentrate on finding good values for these parame-
ters beforehand by using some heuristics on the data. It is
of interest that for both experiments reported here, the aver-
age value of CKAAR’s β was roughly equal to 0.02, which
means that only a little extra regularisation was added.

A Appendix

Lemma A.1 (See [16, Section 2.7]). Suppose that we are
given a matrix A of size n× n partitioned in the following

way A =
[

P Q
R S

]
, where P and S are square ma-

trices of size p × p and s × s respectively (p + s = n),
and Q and R of size p × s and s × p respectively (not
necessarily square). If its inverse is partitioned in the

same manner, A−1 =

[
P̃ Q̃
R̃ S̃

]
, then P̃, Q̃, R̃ and

S̃ which have the same sizes as P, Q, R and S respec-
tively, can be calculated by the following formulae (pro-
vided all the inverses exist): P̃ = P−1 + P−1Q(S −
RP−1Q)−1RP−1; Q̃ = −P−1Q(S−RP−1Q)−1; R̃ =
−(S−RP−1Q)−1RP−1; S̃ = (S−RP−1Q)−1.

References

[1] A. E. Hoerl. Application of ridge analysis to re-
gression problems. Chemical Engineering Progress,
58:54–59, 1962.

[2] V. Vovk. Competitive on-line statistics. International
Statistical Review, 69(2):213–248, 2001.

[3] N. Cesa-Bianchi and G. Lugosi. Prediction, Learn-
ing, and Games. Cambridge University Press, 2006.

[4] C. Saunders, A. Gammerman, and V. Vovk. Ridge
regression learning algorithm in dual variables. In
Proceedings of the 15th Int. Conference on Machine
Learning, pages 515–521. Morgan Kaufmann, 1998.

[5] A. Gammerman, Y. Kalnishkan, and V. Vovk. On-line
prediction with kernels and the complexity approxi-
mation principle. In Proceedings of the 20th Confer-
ence on Uncertainty in Artificial Intelligence, pages
170–176. AUAI Press, 2004.

[6] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic
learning in a random world. Springer, USA, 2005.

[7] N. Cristianini and J. Shawe-Taylor. An Introduction
to Support Vector Machines (and Other Kernel-Based
Learning Methods). Cambridge University Press,
UK, 2000.

[8] B. Schölkopf and A. J. Smola. Learning with Ker-
nels — Support Vector Machines, Regularization, Op-
timization and Beyond. The MIT Press, USA, 2002.

Boston Housing Gaze
Method MSE Statistical Significance MSE Statistical Significance
Poly KRR SVM ×103 KRR SVM
KRR 9.19 ∗ 3× 10−01 2.00 2× 10−12

SVM 9.20 ∗ 3× 10−01 2.66 2× 10−12

KAAR 23.39 5× 10−22 1× 10−22 5.78 1× 10−29 1× 10−20

KOKO 8.92 2× 10−03 1× 10−02 1.98 1× 10−02 1× 10−13

IKAAR 8.59 1× 10−03 3× 10−02 2.00 3× 10−05 2× 10−12

CKAAR 8.37 8× 10−04 1× 10−04 1.96 7× 10−04 3× 10−14

KRRT 9.05 3× 10−02 ∗ 6× 10−02 2.01 ∗ 5× 10−01 8× 10−13

Spline KRR SVM ×103 KRR SVM
KRR 7.62 2× 10−05 2.05 3× 10−19

SVM 8.63 2× 10−05 3.09 3× 10−19

KAAR 25.24 5× 10−25 1× 10−27 12.92 2× 10−30 2× 10−30

KOKO 7.51 3× 10−02 3× 10−06 2.00 1× 10−02 3× 10−21

IKAAR 7.10 1× 10−02 5× 10−08 2.00 2× 10−04 5× 10−20

CKAAR 7.19 3× 10−03 4× 10−08 1.93 5× 10−03 4× 10−22

KRRT 7.57 ∗ 2× 10−01 5× 10−06 2.04 ∗ 4× 10−01 6× 10−20

Anova KRR SVM ×103 KRR SVM
KRR 7.48 ∗ 9× 10−01 1.92 8× 10−05

SVM 7.29 ∗ 9× 10−01 2.13 8× 10−05

KAAR 22.39 4× 10−27 3× 10−28 8.25 2× 10−30 2× 10−30

KOKO 7.42 ∗ 1× 10−01 ∗ 8× 10−01 1.90 6× 10−03 1× 10−05

IKAAR 7.38 9× 10−03 ∗ 9× 10−01 1.92 1× 10−04 5× 10−05

CKAAR 7.28 3× 10−02 ∗ 3× 10−01 1.88 1× 10−03 5× 10−06

KRRT 7.45 ∗ 4× 10−01 ∗ 9× 10−01 1.92 ∗ 3× 10−01 5× 10−05

RBF KRR SVM ×103 KRR SVM
KRR 8.15 ∗ 8× 10−02 3.52 3× 10−09

SVM 8.29 ∗ 8× 10−02 2.99 3× 10−09

KAAR 25.65 9× 10−29 4× 10−29 11.26 3× 10−15 2× 10−30

KOKO 8.12 ∗ 3× 10−01 2× 10−02 3.26 ∗ 6× 10−01 2× 10−09

IKAAR 8.10 ∗ 9× 10−02 4× 10−02 2.81 5× 10−04 9× 10−12

CKAAR 8.00 ∗ 1× 10−01 2× 10−03 2.29 5× 10−02 1× 10−11

KRRT 8.13 ∗ 5× 10−01 3× 10−02 3.46 ∗ 5× 10−01 2× 10−09

Table 1. Results for the Boston Housing [14] and Gaze [15] Datasets.

[9] V. Vovk. Aggregating strategies. In M. Fulk and
J. Case, editors, Proceedings of the 3rd Annual Work-
shop on Computational Learning Theory, pages 371–
383. Morgan Kaufmann, 1990.

[10] M. Aizerman, E. Braverman, and L. Rozonoer. Theo-
retical foundations of the potential function method in
pattern recognition learning. Automation and Remote
Control, 25:821–837, 1964.

[11] H. Drucker, C. Burges, L. Kaufman, A. Smola, and
V. Vapnik. Support vector regression machines. In
Proceedings of the 1996 Conference on Advances in
Neural Information Processing Systems, volume 9,
pages 155–161. The MIT Press, 1997.

[12] T. Joachims. Making large-scale SVM learning prac-
tical. In B. Schölkopf, C. Burges, and A. Smola, ed-

itors, Advances in Kernel Methods: Support Vector
Learning. MIT Press, Cambridge, MA, 1999.

[13] M. Hollander and D. A. Wolfe. Nonparametric Sta-
tistical Methods. John Wiley & Sons, USA, 1973.

[14] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz.
UCI repository of machine learning databases, 1998.

[15] J. Quiñonero-Candela, I. Dagan, B. Magnini, and
F. D’Alché-Buc, editors. Evaluating Predictive Un-
certainty, Visual Object Categorization and Textual
Entailment, volume 3944 of Lecture Notes in Com-
puter Science, Heidelberg, Germany, 2006. Springer.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C. Cambridge
University Press, UK, second edition, 1994.

