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Need for uncertainty-awareness of ML systems
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Lack of uncertainty-awareness of ML systems

Predictions by EfficientNet on test images from ImageNet: For the left image, the
neural network predicts “typewriter keyboard” with certainty 83.14 %, for the right
image “stone wall” with certainty 87.63 %.
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Uncertainty representation and levels of uncertainty-awareness
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Aleatoric versus epistemic uncertainty

Aleatoric (aka statistical) uncertainty
I refers to the notion of randomness, that is, the variability in the outcome which is due

to inherently random effects,
I is a property of the data-generating process,
I and as such irreducible.

Epistemic (aka systematic) uncertainty
I refers to uncertainty caused by a lack of knowledge, i.e.,
I to the epistemic state of the agent (e.g., learning algorithm),
I can in principle be reduced on the basis of additional information (e.g., training data).
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Aleatoric versus epistemic uncertainty
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Aleatoric versus epistemic uncertainty in ML

Both types of uncertainty also play an important role in ML, where the learner’s state
of knowledge strongly depends on the amount of data seen so far ...
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Aleatoric versus epistemic uncertainty in ML

... but also on the underlying model assumptions:

strong prior weaker prior
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Uncertainty about (aleatoric) uncertainty

The distinction between aleatoric and epistemic uncertainty can be difficult: Is
the data-generating process completely random or only very complicated?

Predict the next number: 116, 304, 194, 341, 224, 654, 609, 625, 533, 91, 205,
35, 527, 611, 128, 235, 348, 912, 582, 52, 672, 20, 856, 904, 628, 273, 615, 105,
610, 862, 384, 705, 73, 794, 775, 156, ??

x ← x × 237 mod 971
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Uncertainty about (aleatoric) uncertainty
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Uncertainty about (aleatoric) uncertainty
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Sources of uncertainty
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Agenda

1. Aleatoric and epistemic uncertainty

2. Learning uncertainty-aware predictors

3. Uncertainty quantification

4. Summary and outlook
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Predictive uncertainty

We assume a standard setting of supervised learning and are mainly interested in
(per-instance) predictive uncertainty, i.e., the uncertainty in a prediction

ŷ = h(x)

produced for a query instance x , where h has been learned on training data D.

Various approaches have been proposed in the literature:

I Capture model uncertainty, translate into predictive uncertainty

I Validation and self-assessment

I Direct uncertainty prediction
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The Bayesian approach

A Bayesian learner maintains a probability distribution over the hypothesis space.

The less concentrated that distribution, the higher the learner’s epistemic uncertainty.
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Posterior predictive distribution
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Ensemble methods
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Agenda

1. Aleatoric and epistemic uncertainty
2. Learning uncertainty-aware predictors

I Model uncertainty and ensembling
I Validation and self-assessment
I Direct uncertainty prediction

3. Uncertainty quantification

4. Summary and outlook
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Validation and self-assessment

In addition to learning a predictor h on X , the learner also figures out how that
predictor performs on out-of-sample data.

Example: Estimation of error rate via (cross-)validation.

Yet, this is a global performance measure, not per-instance.

Per-instance uncertainty estimation appears to be difficult and indeed has theoretical
limits (Barber et al., 2021).
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Calibration

On calibration data, the learner extracts information such as: A predicted probability
of ≈ 0.6 actually means a true probability of ≈ 0.3.

Grouping of instances with same score (predicted probability), needed to construct
frequentist corrections of level-1 predictions based on level-0 data.

A calibrator is a one-dimensional function, hence easier to learn.
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Conformal prediction

A conformal predictor uses calibration data to learn rules such as: With high
probability, true outcomes have a nonconformity of at most α0.

This allows for constructing non-trivial yet valid prediction sets.
21 / 52



Level-2 predictions

Previous approaches refer to level-1 uncertainty, though level-2 estimation is in
principle also possible (e.g., Venn predictors)
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Per-instance assessment

Previous approaches require grouping of instances, though attempts at per-instance
assessment have also been made.

For example, Lahlou et al. (2021) train an error predictor on validation data, which
can be used to estimate epistemic uncertainty in terms of pointwise (excess)
prediction error

E
(
ĥ, x
)

=
(
ĥ(x)− f ∗(x)

)2
.

Yet, learning such a predictor appears to be difficult (and also includes learning of
f ∗(x) or knowledge thereof).

Besides, one may question the definition of uncertainty in terms of loss.
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ĥ(x)− f ∗(x)

)2
.

Yet, learning such a predictor appears to be difficult (and also includes learning of
f ∗(x) or knowledge thereof).

Besides, one may question the definition of uncertainty in terms of loss.

23 / 52



Per-instance assessment

Previous approaches require grouping of instances, though attempts at per-instance
assessment have also been made.

For example, Lahlou et al. (2021) train an error predictor on validation data, which
can be used to estimate epistemic uncertainty in terms of pointwise (excess)
prediction error

E
(
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Direct prediction
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Direct (epistemic) uncertainty prediction

Given training data D = {(x i , yi )}Ni=1 ⊂ X × Y, can we train a predictor

ĥ : X −→ P
(
P(Y)

)
via (variants of) empirical risk minimisation (ERM), i.e.,

ĥ = arg min
h

N∑
i=1

`2

(
ĥ(x i ), yi

)
,

with a suitable level-2 loss function

`2 : P
(
P(Y)

)
× Y −→ R ,

such that the predictor represents its epistemic uncertainty in a faithful way?
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Example: predicting a Dirichlet distribution
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The case of level-1 predictions
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Direct (epistemic) uncertainty prediction

Training a probabilistic predictor via empirical risk minimisation, i.e.,

ĥ = arg min
h

N∑
i=1

`1

(
ĥ(x i ), yi

)
,

yields good (unbiased) predictors if `1 is a (strictly) proper scoring rule, which
incentivises the learner to predict the true p(y | x).

A loss function `1 : P(Y)× Y −→ R is a proper scoring rule if the expected loss
minimiser coincides with the true probability p:

p = arg min
p̂

EY∼p `1(p̂,Y )

A scoring rule is strictly proper if the minimiser is unique.
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Direct epistemic uncertainty prediction

Several authors proposed a level-2 loss of the form

`2

(
Q, y

)
= EP∼Q `1 (P, y) ,

where Q is the level-2 prediction for a query instance x .

Thus, an individual prediction Q is penalised in terms of the expected level-1 loss,
with the expectation taken over the realisations of P.

Examples of level-1 losses include cross entropy (Charpentier et al., 2020) and Brier
score (Sensoy et al., 2018).

Besides, a regularised version has been proposed:

`2

(
Q, y

)
= EP∼Q `1 (P, y) + λ dKL (Q,Q0)
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Appropriate level-2 losses

Informally, we define a level-2 loss function `2 as appropriate if the following holds
for the empirical loss minimiser

Q(N) = arg min
Q

1

N

N∑
n=1

`2

(
Q, y (n)

)
on any i.i.d. observational data sequence y (1), y (2), . . . with y (i) ∼ P∗:

(A1) The learner’s uncertainty gradually decreases (in expectation) with increasing sample
size N, in terms of a suitable uncertainty measure U.

(A2) In the limit N →∞, all epistemic uncertainty disappears and Q(N) → δP∗ .
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A negative result

We formally proved that a loss minimisation approach using a level-2 loss as specified
above does not lead to an appropriate level-2 loss (Bengs et al., 2022).

The results are general in the sense that Q can be any level-2 distribution, not
necessarily restricted to Dirichlet distributions.

Moreover, the results do not depend on the underlying uncertainty measure U, as
long as U is not constant, maximal for the uniform distribution and minimal for Dirac
measures.

The results reveal that the quality of a (level-2) prediction Q cannot be judged solely
in the context of (level-0) observations y .
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1. Aleatoric and epistemic uncertainty

2. Learning uncertainty-aware predictors

3. Uncertainty quantification

4. Summary and outlook
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Uncertainty quantification

Given a prediction h(x) in the form of a second-order distribution or a credal set, how
to quantify the total uncertainty in that prediction in terms of a single number?

We may also seek a decomposition into an aleatoric and an epistemic part:

TU = AU + EU
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Uncertainty quantification

One idea is to quantify the different types of uncertainty in terms of
I Shannon entropy

H[Y ] = −
∑
y∈Y

p(y) log2 p(y) ,

,
I conditional entropy

H[Y |P] = −
∫

Q(p | D)

∑
y∈Y

p(y | p) log2 p(y | p)

 d p ,

I and mutual information

between outcome Y and (level-1) distribution P (Malinin and Gales, 2018),
respectively:

H[Y ]︸ ︷︷ ︸
total uncertainty

= H[Y |P]︸ ︷︷ ︸
aleatoric uncertainty

+ I (Y ;P)︸ ︷︷ ︸
epistemic uncertainty
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Remarks

MI actually measures the (average) divergence between the candidate (level-1)
distributions, so it is rather a measure of conflict than ignorance (which is difficult
to capture in terms of probabilities anyway).

One may also question the additive decomposition TU = AU + EU itself.
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Uncertainty of credal sets

Uncertainty measures U for credal sets have been studied axiomatically:

A1 Non-negativity, range: U is non-negative and upper-bounded by some value r ∈ R, for
example r = log(K ), which is assumed for Q = ∆K (the case of complete ignorance).

A2 Continuity: U is a continuous functional.

A3 Monotonicity: If Q ⊆ Q ′ for credal sets Q,Q ′, then U(Q) ≤ U(Q ′).

A4 Probability consistency: U reduces to standard Shannon entropy in the case where Q
reduces to a single probability distribution.

A5 Sub-additivity: For a (joint) credal set Q on a product space Y ′ × Y ′′ with marginals
Q ′ resp. Q ′′,

U(Q) ≤ U(Q ′) + U(Q ′′) .

A6 Additivity: The last inequality is an equality in the case where Q ′ and Q ′′ are
independent (assuming a suitably defined notion of independence).
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Measures of total, aleatoric, and epistemic uncertainty

A well-founded generalisation of entropy and natural measure of total uncertainty is
the upper entropy:

S∗(Q) ..= max
q∈Q

S(q)

A well-founded measure of epistemic uncertainty is the generalised Hartley
measure

GH(Q) ..=
∑
A⊆Y

mQ(A) log(|A|) ,

which extends the Hartley measure H(A) ..= log(|A|) from sets to graded sets.

Although an equally well-justified measure of aleatoric uncertainty (conflict) in the
form of an extension of Shannon entropy has not been found so far (Klir, 2005), the
lower entropy is a natural measure of irreducible uncertainty:

S∗(Q) ..= min
q∈Q

S(q)
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Disaggregation

There is no additive decomposition

TU(Q) = AU(Q) + EU(Q)

such that all three measures behave well.

Idea: Fix two “good” measures and derive the third one in terms of the difference.

S∗(Q) =
(
S∗(Q)− GH(Q)︸ ︷︷ ︸

GS(Q)

)
+ GH(Q)

S∗(Q) = S∗(Q) +
(
S∗(Q)− S∗(Q)

)
H. et al. (2022) provide a critical discussion of such decompositions and isolate
potential deficiencies.
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A new measure

We proposed and axiomatically justified a new measure of total predictive
uncertainty, more tailored to the ML setting, as well as its decomposition into
aleatoric and epistemic uncertainty.

In the case of binary classification, where a credal prediction is of the form

Qα,β =
{

Bern(p) |α ≤ p ≤ β
}
,

the measure is given as follows:

TP(α, β) = min(1− α, β)︸ ︷︷ ︸
total

= min(α, 1− β)︸ ︷︷ ︸
aleatoric

+ (β − α)︸ ︷︷ ︸
epistemic
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Empirical evaluation

Ensemble-based construction of credal predictions.

Accuracy-rejection curves: Allow the learner to reject the r % presumably most
uncertain test cases and measure accuracy on the remaining ones.

If allowed to reject 50 % of the cases,
the red learner manages to increase
accuracy from 0.25 to 0.75.
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Results

Empirical results match with theory: Formally justified measures show strong
performance, whereas the “derived” measures perform very poorly.

Newly proposed measure yields the only decomposition of total into aleatoric and
epistemic uncertainty, such that all three measures produce meaningful results.
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Summary and Outlook

Learning reliable predictors that represent their uncertainty in a faithful way is a
challenging task, both conceptually and computationally.

Distinguishing different sources and types of uncertainty is useful, though it
seems that epistemic uncertainty hard to represent in an objective way (depends on
prior, regularisation, incentive, etc.).

Quantifying predictive uncertainty in a theoretically sound manner, and
disentangling total into aleatoric and epistemic uncertainty, is difficult, too.

Usefulness of generalized uncertainty calculi?
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Model misspecification
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Example: level-2 distributions over Bernoulli
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Evaluation: accuracy-rejection curves

Reject test instances for which (total, aleatoric, epistemic) uncertainty exceeds a
certain threshold, measure accuracy on the remaining ones.
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A negative result

Theorem 1. If `1 : P(Y)× Y −→ R is such that

`1 (Eθ∼Q [θ], y) ≤ Eθ∼Q [`1 (θ, y)]

for all y ∈ Y, then `2(Q, y) = Eθ∼Q [`1(θ, y)] violates A1.

I Condition on `1 is fulfilled if `1 is convex (in the first argument)
I Includes Brier score and cross-entropy, which are (strictly) convex
I Proof reveals that Q̂ is always a point-mass on P(Y) (i.e., a level-1 prediction)
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A negative result

Theorem 2. If `1 : P(Y)× Y −→ R is strictly convex in its first argument, then
there exists λ > 0 such that

`2(Q, y) = Eθ∼Q [`1(θ, y)] + λ ·KL [Q,Unif(P(Y))]

violates A1 for all λ < λ.
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A negative result

Theorem 3. If `1 : P(Y)× Y −→ R is

(i) strictly proper,
(ii) locally Lipschitz (in the first argument),

then there exists λ > 0 such that

`2(Q, y) = Eθ∼Q [`1(θ, y)] + λ ·KL [Q,Unif(P(Y))]

violates A2 for all λ > λ.

Brier score and cross-entropy fulfill both (i) and (ii).
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The need for assumptions

A precise specification of the problem setting and underlying assumptions is an
important prerequisite, not only for providing learning guarantees, but also for
uncertainty quantification.

Quite obvious for assumptions such as i.i.d. data generation (future is like past).

Here, one might be quite sure about the class of the query under standard
assumptions of binary classification, but much less so in a setting of novelty
detection, where new classes may emerge.
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The Dirichlet distribution

A Dirichlet distribution Dir(α) is specified by means of K ≥ 2 positive real-valued
parameters, i.e., a vector α = (α1, . . . , αK ) ∈ RK

+.

The probability density function is defined on the K simplex

∆K =

{
θ = (θ1, . . . , θK )> | θ1, . . . , θK ≥ 0,

K∑
k=1

θk = 1

}
and given as follows:

p(θ |α) = p(θ1, . . . , θK |α) =
1

B(α)

K∏
k=1

θαk−1
k ,

where the normalisation constant is the multivariate Beta function.

In Bayesian statistics, the Dirichlet distribution is commonly used as the conjugate
prior of the multinomial distribution.
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