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Distribution-free inference: questions

Why do we want “distribution-free” guarantees?

When we analyze data, we...

• Run a model/algorithm that is valid under certain assumptions

( parametric model / smoothness conditions / sparsity assumption / ... )

• But if the assumptions don’t hold, can we trust the output?

( parameter estimate / predicted value / error bound / hypothesis test / ... )

• So, we run a test to check if the assumptions hold

( goodness of fit / overdispersion / calibration ... )

• But, what if this test is only guaranteed to detect violations,

under some other assumptions?

The goal of distribution-free inference is to provide guarantees

that are valid universally over all data distributions.
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Distribution-free inference: questions

What are inference questions we might want to ask, distribution-free?

• Prediction: the unobserved response Y will lie in [some range]

• Effect size: the dependence between X and Y lies in [some range]

• Independence: test if X & Y independent given [some confounders]

• Regression: the distribution of Y given X satisfies [some property]

↗
this talk
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The prediction problem

Setting:

• Training data (X1,Y1), . . . , (Xn,Yn), test point (Xn+1,Yn+1)
↗ ↖

observed want to predict

• If fitted model µ̂ overfits to training data,

|Yn+1 − µ̂(Xn+1)| � 1

n

n∑

i=1

|Yi − µ̂(Xi )|

even if training & test data are from the same distribution
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The prediction problem

Run algorithm A on the training data  fitted model µ̂

Prediction interval for Yn+1:

Ĉ (Xn+1) = µ̂(Xn+1) ± (margin of error)

↘
Use training residuals? (“naive”)

Use a parametric model?

Use smoothness assumptions?

Use cross-validation?
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Using a holdout set

• Using any algorithm, fit model

µ̂ = A
(

(X1,Y1), . . . , (Xn/2,Yn/2)
)

• Compute holdout residuals

Ri = |Yi − µ̂(Xi )|, i = n/2 + 1 , . . . , n

• Prediction interval:

Ĉ (Xn+1) = µ̂(Xn+1) ±
(
the (1− α)-quantile of Rn/2+1, . . . ,Rn

)
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Conformal prediction framework

Background on the conformal prediction (CP) framework:

key idea = statistical inference via exchangeability of the data

Learning by Transduction 

Abstract 

A. Gammerman, V. Vovk, V. Vapnik 
Department of Computer Science 

Royal Holloway, University of London 
Egham, Surrey TW20 OEX, UK 
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We describe a method for predicting a clas- 
sification of an object given classifications of 
the objects in the training set, assuming that 
the pairs object/classification are generated 
by an i.i.d. process from a continuous proba- 
bility distribution. Our method is a modifica- 
tion of Vapnik's support-vector machine; its 
main novelty is that it gives not only the pre- 
diction itself but also a practicable measure of 
the evidence found in support of that predic- 
tion. We also describe a procedure for assign- 
ing degrees of confidence to predictions made 
by the support vector machine. Some experi- 
mental results are presented, and possible ex- 
tensions of the algorithms are discussed. 

1 THEPROBLEM 

Suppose labeled points (xi, yi) (i = 1,2, . . .), where 
xi E Rn (our objects are specified by n real-valued 
attributes) and yi E {-1,1}, are generated indepen- 
dently from an unknown (but the same for all points) 
probability distribution. We are given 1 points xi, 
i = 1, . . . , I, together with their classifications yi E 
{-1,1}, and an (I + 1)th unclassified point xl+l. How 
should it be classified? (This is a problem of transduc- 
tion, in the sense that we are interested in the classifi- 
cation of a particular example rather than in a general 
rule for classifying future examples; for further discus- 
sion of transduction, see Section 6.) 

A natural and well-known approach is Vapnik's [7] 
method of support vector (SV) machines. The SV 
method works very well in practice, but unfortunately 
no practicable estimates of the accuracy of its predic- 
tions are known if our only information is 1 classified 
points and one unclassified point. The most relevant, 
in this context, theorem from [7] (Theorem 5.2) says 

that the probability of misclassifying the (l+l)th point 
is at  most 

E(number of support vectors among XI ,.. . ,x l+~)  
1 + 1  , 

(1) 
where the points xl ,. . . ,xl+l are generated indepen- 
dently from the underlying distribution P; support 
vectors are defined in Section 5 below. To apply this 
theorem we need to know the probability distribution 
P, while the only information we do know is 

Clearly this is not sufficient to estimate the expecta- 
tion in (1). 

Remark 1 Dawid [2] distinguishes between nominal 
and stochastic inference; in our present context nomi- 
nal inference is the prediction itself and stochastic in- 
ference is some assertion about the accuracy of this 
prediction. To use this terminology, the SV method 
provides only nominal but no stochastic inference. (Of 
course, since the SV method is being actively devel- 
oped, the situation is likely to change in the future.) 

2 PREDICTING WITH 
CONFIDENCE 

Now we briefly describe, following [4], our transduc- 
tive algorithm, putting off its substantiation until Sec- 
tion 5. We consider two pictures in the space Rn: 
both pictures contain (1 + 1) points (the 1 points in the 
training set and one point to be classified), the points 
in the training set are classified as before, and the only 
difference between the pictures is the classification of 
the (I + 1)th point; in the -1-picture that point is clas- 
sified as -1 and in the 1-picture it is classified as 1. It 
can be proven that the (If 1)th point will be a support 
vector in at least one of the pictures. Let SV(1) (resp. 
SV(-1)) be the set of indices of support vectors in the 
1-picture (resp. -1-picture); we let # A  stand for the 
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ABSTRACT
We develop a general framework for distribution-free predictive inference in regression, using conformal
inference. The proposed methodology allows for the construction of a prediction band for the response
variable using any estimator of the regression function. The resulting prediction band preserves the consis-
tency properties of the original estimator under standard assumptions, while guaranteeing !nite-sample
marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically
and theoretically, the two major variants of our conformal framework: full conformal inference and split
conformal inference, along with a related jackknife method. These methods o"er di"erent tradeo"s
between statistical accuracy (length of resulting prediction intervals) and computational e#ciency. As
extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out
conformal inference, which has essentially the same computational e#ciency as split conformal inference.
We also describe an extension of our procedures for producing prediction bands with locally varying
length, to adapt to heteroscedasticity in the data. Finally, we propose a model-free notion of variable
importance, called leave-one-covariate-out or LOCO inference. Accompanying this article is an R package
conformalInference that implements all of the proposals we have introduced. In the spirit of
reproducibility, all of our empirical results can also be easily (re)generated using this package.

1. Introduction

Consider iid regression data

Z1, . . . ,Zn ∼ P,

where each Zi = (Xi,Yi) is a random variable in Rd × R, com-
prised of a response variable Yi and a d-dimensional vector of
features (or predictors, or covariates) Xi = (Xi(1), . . . ,Xi(d)).
The feature dimension dmay be large relative to the sample size
n (in an asymptotic model, d is allowed to increase with n). Let

µ(x) = E(Y |X = x), x ∈ Rd

denote the regression function. We are interested in predicting
a new response Yn+1 from a new feature value Xn+1, with no
assumptions on µ and P. Formally, given a nominal miscover-
age level α ∈ (0, 1), we seek to constructing a prediction band
C ⊆ Rd × R based on Z1, . . . ,Zn with the property that

P
(
Yn+1 ∈ C(Xn+1)

)
≥ 1 − α, (1)

where the probability is taken over the n + 1 iid draws
Z1, . . . ,Zn,Zn+1 ∼ P, and for a point x ∈ Rd we denote
C(x) = {y ∈ R : (x, y) ∈ C}. The main goal of this article is
to construct prediction bands as in (1) that have !nite-sample
(nonasymptotic) validity, without assumptions on P. A second
goal is to construct model-free inferential statements about the
importance of each covariate in the prediction model for Yn+1
given Xn+1.

Our leading example is high-dimensional regression, where
d ' n and a linear function is used to approximate µ (but the

CONTACT Jing Lei jinglei@andrew.cmu.edu Department of Statistics, Carnegie Mellon University,  Baker Hall, Pittsburgh, PA .
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

linearmodel is not necessarily assumed to be correct). Common
approaches in this setting include greedy methods like forward
stepwise regression, and "1-based methods like the lasso. There
is an enormous amount of work dedicated to studying various
properties of these methods, but to our knowledge, there is
very little work on prediction sets. Our framework provides
proper prediction sets for these methods, and for essentially any
high-dimensional regression method. It also covers classical
linear regression and nonparametric regression techniques.
The basis of our framework is conformal prediction, a method
invented by Vovk, Gammerman, and Shafer (2005).

1.1. RelatedWork

Conformal inference. The conformal prediction framework
was originally proposed as a sequential approach for forming
prediction intervals, by Vovk, Gammerman, and Shafer (2005)
and Vovk, Nouretdinov, and Gammerman (2009). The basic
idea is simple. Keeping the regression setting introduced above
and given a new independent draw (Xn+1,Yn+1) from P, to
decide if a value y is to be included in C(Xn+1), we consider
testing the null hypothesis that Yn+1 = y and construct a valid
p-value based on the empirical quantiles of the augmented
sample (X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1) with Yn+1 = y
(see Section 2 for details). The data augmentation step makes
the procedure immune to over!tting, so that the resulting
prediction band always has valid average coverage as in (1).
Conformal inference has also been studied as a batch (rather

©  American Statistical Association

Gammerman, Vovk, Vapnik Vovk, Gammerman, Shafer Lei, G’Sell, Rinaldo,
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Conformal prediction framework

What is exchangeability?

(X1,Y1), . . . , (Xn+1,Yn+1) & (Xσ(1),Yσ(1)), . . . , (Xσ(n+1),Yσ(n+1))

have the same joint distribution for any permutation σ

Equivalently:

Given an unordered data set, any ordering is equally likely

Examples:

• (Xi ,Yi )’s are i.i.d. from any distribution

• (Xi ,Yi )’s sampled uniformly without replacement from any set

• Not an example: a stationary time series w/ dependence
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Split conformal prediction

Split conformal prediction interval (a.k.a. holdout):1

Ĉ (Xn+1) = µ̂(Xn+1) ± Q1−α

{
Rn/2+1, . . . ,Rn

}

↖
the d(1− α)(n/2 + 1)e-th smallest value in the list

Theorem:

If (X1,Y1), . . . , (Xn+1,Yn+1) are exchangeable (e.g., i.i.d.),

then for any algorithm A, the split conformal method satisfies

P
{
Yn+1 ∈ Ĉ (Xn+1)

}
≥ 1− α.

1Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Split conformal prediction

Proof:

After conditioning on µ̂, holdout + test data is exchangeable

⇒ residuals Rn/2+1, . . . ,Rn,Rn+1 are exchangeable

⇒ P
{
Rn+1 ≤

(
the (1− α)-quantile of Rn/2+1, . . . ,Rn+1

)}
≥ 1− α

m
Rn+1 ≤ Q1−α{Rn/2+1, . . . ,Rn}
m

Yn+1 ∈ Ĉ (Xn+1)
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The nonconformity score

In the above construction,

Ĉ (Xn+1) = µ̂(Xn+1)± [...] = { all y values with |y − µ̂(Xn+1)| ≤ [...] }

We can generalize to any score function:2

Ĉ (Xn+1) = { all y values with Ŝ(Xn+1, y) ≤ [...] }

where Ŝ(x , y) measures “nonconformity” of the data point (x , y)

Ŝ may be called the “nonconformity score”, or the “conformity score”

2Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Ŝ may be called the “nonconformity score”, or the “conformity score”

2Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

11/63



The nonconformity score

Split conformal with an arbitrary nonconformity score:

• Using data i = 1, . . . , n/2, fit nonconformity score function Ŝ

• Compute Si = Ŝ(Xi ,Yi ) for i = n/2 + 1, . . . , n

• Prediction interval:

Ĉ (Xn+1) = {y : Ŝ(Xn+1, y) ≤ Q1−α{Sn/2+1, . . . ,Sn}}

Choose Ŝ(x , y) = |y − µ̂(x)|  Ĉ (Xn+1) = µ̂(Xn+1)± [...] as before
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The nonconformity score: examples

If noise level varies with X , may want varying interval width:3

Ŝ(x , y) =
|y − µ̂(x)|
σ̂(x)

⇒ Ĉ (Xn+1) = µ̂(Xn+1)± σ̂(Xn+1) · Q1−α{...}

(figure from Lei et al 2018)

3Lei et al 2018, Distribution-Free Predictive Inference for Regression
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The nonconformity score: examples

If the shape of distrib. of Y |X varies with X ,

centering Ĉ (Xn+1) at µ̂(Xn+1) may not be optimal

Instead, can estimate conditional quantiles directly:4,5

• Estimate q̂α/2, q̂1−α/2 on the training set

• Nonconformity score: Ŝ(x , y) = max{q̂α/2(x)− y , y − q̂1−α/2(x)}
⇒ Ĉ (Xn+1) =

[
q̂α/2(Xn+1)−Q1−α{...}, q̂1−α/2(Xn+1)+Q1−α{...}

]
(a) Split: Avg. coverage 91.4%; Avg. length 2.91. (b) Local: Avg. coverage 91.7%; Avg. length 2.86.

(c) CQR: Avg. coverage 91.06%; Avg. length 1.99. (d) Length of prediction intervals.

Figure 2: Prediction intervals on simulated heteroscedastic data with outliers (see Figure 7 for a full
range display): (a) the standard split conformal method, (b) its locally adaptive variant, and (c) CQR
(our method). The length of the interval as a function of X is shown in (d). The target coverage rate
is 90%. The broken black curve in (a) and (b) is the pointwise prediction from the random forest
estimator. In (c), we show two curves, representing the lower and upper quantile regression estimates
based on random forests [22]. Observe how in this example the quantile regression estimates closely
match the adjusted estimates—the boundary of the blue region—obtained by conformalization.

incurred by this mistake. Similarly, if Yi is above the upper endpoint of the interval, Yi > q̂↵hi(Xi),
then Ei = |Yi � q̂↵hi(Xi)|. Finally, if Yi correctly belongs to the interval, q̂↵lo(Xi)  Yi  q̂↵hi(Xi),
then Ei is the larger of the two non-positive numbers q̂↵lo(Xi)� Yi and Yi � q̂↵hi(Xi) and so is itself
non-positive. The conformity score thus accounts for both undercoverage and overcoverage.

Finally, given new input data Xn+1, we construct the prediction interval for Yn+1 as

C(Xn+1) = [q̂↵lo(Xn+1)�Q1�↵(E, I2), q̂↵hi(Xn+1) + Q1�↵(E, I2)] , (10)

where

Q1�↵(E, I2) := (1� ↵)(1 + 1/|I2|)-th empirical quantile of {Ei : i 2 I2} (11)

conformalizes the plug-in prediction interval.

For ease of reference, the CQR procedure is summarized in Algorithm 1. We now prove that its
prediction intervals satisfy the marginal, distribution-free coverage guarantee (1).

Theorem 1. If (Xi, Yi), i = 1, . . . , n + 1 are exchangeable, then the prediction interval C(Xn+1)
constructed by the split CQR algorithm satisfies

P{Yn+1 2 C(Xn+1)} � 1� ↵.

5

(a) Split: Avg. coverage 91.4%; Avg. length 2.91. (b) Local: Avg. coverage 91.7%; Avg. length 2.86.

(c) CQR: Avg. coverage 91.06%; Avg. length 1.99. (d) Length of prediction intervals.

Figure 2: Prediction intervals on simulated heteroscedastic data with outliers (see Figure 7 for a full
range display): (a) the standard split conformal method, (b) its locally adaptive variant, and (c) CQR
(our method). The length of the interval as a function of X is shown in (d). The target coverage rate
is 90%. The broken black curve in (a) and (b) is the pointwise prediction from the random forest
estimator. In (c), we show two curves, representing the lower and upper quantile regression estimates
based on random forests [22]. Observe how in this example the quantile regression estimates closely
match the adjusted estimates—the boundary of the blue region—obtained by conformalization.

incurred by this mistake. Similarly, if Yi is above the upper endpoint of the interval, Yi > q̂↵hi(Xi),
then Ei = |Yi � q̂↵hi(Xi)|. Finally, if Yi correctly belongs to the interval, q̂↵lo(Xi)  Yi  q̂↵hi(Xi),
then Ei is the larger of the two non-positive numbers q̂↵lo(Xi)� Yi and Yi � q̂↵hi(Xi) and so is itself
non-positive. The conformity score thus accounts for both undercoverage and overcoverage.

Finally, given new input data Xn+1, we construct the prediction interval for Yn+1 as

C(Xn+1) = [q̂↵lo(Xn+1)�Q1�↵(E, I2), q̂↵hi(Xn+1) + Q1�↵(E, I2)] , (10)

where

Q1�↵(E, I2) := (1� ↵)(1 + 1/|I2|)-th empirical quantile of {Ei : i 2 I2} (11)

conformalizes the plug-in prediction interval.

For ease of reference, the CQR procedure is summarized in Algorithm 1. We now prove that its
prediction intervals satisfy the marginal, distribution-free coverage guarantee (1).

Theorem 1. If (Xi, Yi), i = 1, . . . , n + 1 are exchangeable, then the prediction interval C(Xn+1)
constructed by the split CQR algorithm satisfies

P{Yn+1 2 C(Xn+1)} � 1� ↵.

5

(figure from Romano et al 2019)

4Romano et al 2019, Conformalized quantile regression

5See also an alternative approach by Kivaranovic et al 2019
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The nonconformity score: examples

Or, the score can directly use the estimated distribution of Y |X :6

• Estimate the conditional CDF, F̂ (y |x), on training set

• Nonconformity score: Ŝ(x , y) =
∣∣F̂ (y |x)− 0.5

∣∣

⇒ Ĉ (Xn+1) = {y : F̂ (y |Xn+1) ∈ 0.5± Q1−α{...}}

0 2 4 6 8 10

0.
00

0.
10

0.
20

y

estimated distribution of Yn+1|Xn+1

equal area

6Chernozhukov et al 2019, Distributional conformal prediction 15/63



The nonconformity score: examples

An alternative:7

• Estimate the conditional density, f̂ (y |x), on training set

• Nonconformity score = two-tailed test:

Ŝ(x , y) = −f̂ (y |x)

⇒ Ĉ (Xn+1) = {y : f̂ (y |Xn+1) ≥ −Q1−α{...}}

0 2 4 6 8 10

0.
00

0.
10

0.
20

y

estimated distribution of Yn+1|Xn+1

7Izbicki et al 2020, Flexible distribution-free conditional predictive bands using density estimators
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The nonconformity score: examples

Probabilistic conformal prediction—use a generative model:8

• Fit a generative model for Y |X , on the training data

• Given Xi , draw samples Ŷi,1, . . . , Ŷi,K from the generative model

• Nonconformity score:

Ŝ(Xi , y) = min
k=1,...,K

distance(y , Ŷik)

⇒ Ĉ (Xn+1) = {y : distance(y , Ŷn+1,k) ≤ Q1−α{...} for any k}

0 2 4 6 8 10

0.
00

0.
10

0.
20

y

generative model for Yn+1|Xn+1

8Wang et al 2022, Probabilistic Conformal Prediction Using Conditional Random Samples
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Categorical response variable

If the response Y is categorical, with values Y = {y1, . . . , yK}—

• p̂k(x) estimates P {Y = yk | X = x} using training data

• A natural score function: Ŝ(x , yk) = −p̂k(x)

⇒ Ĉ (Xn+1) = {y : p̂k(Xn+1) ≥ −Q1−α{...} for any k}

y1 y2 y3 y4 y5

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0 {prediction set

y1 y2 y3 y4 y5

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0 {prediction set
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Categorical response variable

A more efficient construction:9

• How far into the tail of the distribution, is the label Y ?

Ŝ(x , yk) =
∑

k′

p̂k′(x) · 1{p̂k′(x) ≥ p̂k(x)}

y1 y2 y3 y4 y5

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0 {pred. set

y1 y2 y3 y4 y5

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0 {prediction set

9Podkopaev & Ramdas 2021, Distribution-free uncertainty quantification for classification under label shift
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Split vs full conformal prediction

All methods so far rely on data splitting:

• Training: use n/2 data points to develop a score function Ŝ

• Calibration: use n/2 data points to learn the distrib. of Ŝ(X ,Y )

• Then we can predict Ŝ(Xn+1,Yn+1)  can predict Yn+1

The drawback: sample splitting means that we only use n/2 data points

to fit the model / the score function
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Split vs full conformal prediction

Naive method vs Holdout method

µ̂(Xn+1)︸ ︷︷ ︸
fitted on n points
⇒ more accurate

± training resid.

quantile︸ ︷︷ ︸
too small

(overfitted)

µ̂(Xn+1)︸ ︷︷ ︸
fitted on n/2 points
⇒ less accurate

± holdout resid.

quantile︸ ︷︷ ︸
calibrated

(but wider)

An alternative—the full conformal method:10

• Models fitted on all n training samples (no data splitting)

• Guaranteed distribution-free predictive coverage

• High computational cost

10Vovk, Gammerman, Shafer 2005
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Split vs full conformal prediction

Terminology:

holdout method / split conformal / inductive conformal

conformal / full conformal / transductive conformal

22/63



Full conformal prediction

• Fit model to training+test data

µ̂ = A((X1,Y1), . . . , (Xn,Yn), (Xn+1,

y

Yn+1

//////

))

• Compute residuals

Ri = |Yi − µ̂(Xi )| for i ≤ n; Rn+1 = |

y

Yn+1

//////

− µ̂(Xn+1)|

• Check if Rn+1 ≤
[
(1− α) quantile of R1, . . . ,Rn,Rn+1

]

↖
If data points are exchangeable, and A treats data points symmetrically,

then R1, . . . ,Rn+1 are exchangeable

⇒ this event has ≥ 1− α probability

if we plug in y = Yn+1
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Full conformal prediction

• Fit model to training+test data

µ̂ = A((X1, Y1), . . . , (Xn, Yn), (Xn+1, y))

• Compute residuals

Ri = |Yi − µ̂(Xi )|, i = 1, . . . , n, Rn+1 = |y − µ̂(Xn+1)|

• Check if Rn+1 ≤
[

(1− α) quantile of R1, . . . , Rn, Rn+1

]

y  {Yes,No}

↙ ↘
if Yes: add y ∈ Ĉ (Xn+1) if No: discard y

Test value y ∈ R

↘

P
{
Yn+1 ∈ Ĉ (Xn+1)

}
= P {for test value y = Yn+1, answer is Yes} ≥ 1− α
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Full conformal prediction

Validity guarantee for full conformal:11

Theorem:

If (X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1) are exchangeable (e.g., i.i.d.),

and the algorithm A treats data points symmetrically, then full CP satisfies

P
{
Yn+1 ∈ Ĉ (Xn+1)

}
≥ 1− α.

• Split conformal can be viewed as a special case.

11Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World
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Full conformal prediction

Full conformal can be run with any score function on data sets:

(
(x1, y1), . . . , (xn+1, yn+1)

)
7→ (S1, . . . ,Sn+1)

Si = “nonconformity score” of data point i , relative to rest of the data

• Regression: Si = |yi − µ̂(xi )| or Si = |yi − µ̂(xi )|/σ̂(xi )|

• Quantile regr.: Si compares yi to q̂α/2(xi ) & q̂1−α/2(xi )

• Classification: Si = −p̂(yi |xi )

• & many more
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Full conformal: computational challenges

Full conformal prediction requires that the algorithm A is re-run:

• For each test value Xn+1 of interest

• For every possible value of Yn+1 (e.g, all y ∈ R)

Approaches:

• In practice — restrict to a grid of y values (but no theory)

• Specialized methods for specific algorithms e.g. Lasso12

• Discretized CP — use a discretized version of A
to restore theoretical guarantees13

12Lei 2017, Fast Exact Conformalization of Lasso using Piecewise Linear Homotopy

13Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference
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Full conformal: computational challenges

A preliminary observation:14

It is valid to run CP on the interval [min1≤i≤n Yi , max1≤i≤n Yi ]

• With prob. ≥ 1− 2
n+1 , including Yn+1 doesn’t change the endpoints

• So, coverage is ≥ 1− α− 2
n+1

14Chen, Wang, Ha, & B. 2016, Trimmed conformal prediction for high-dimensional models.
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Full conformal: computational challenges

Conformal prediction:

y ∈ R
Ĉ (Xn+1)

Conformal prediction with rounding (informal version):

y ∈ R

Ĉ (Xn+1)

y1 y2 y3 y4 y5 y6

Problems to solve:

• Theory to guarantee coverage rate 1− α?

• Avoid wider intervals due to discretized grid?
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Ĉ (Xn+1)

y1 y2 y3 y4 y5 y6

Problems to solve:

• Theory to guarantee coverage rate 1− α?

• Avoid wider intervals due to discretized grid?

29/63



Full conformal: computational challenges

Conformal prediction:

y ∈ R
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Full conformal: computational challenges

Why do we lose the coverage guarantee?

• If only fit µ̂ on (X1,Y1), . . . , (Xn,Yn), (Xn+1, y) for y in a grid...

• Equivalent to: fit µ̂ on (X1,Y1), . . . , (Xn,Yn), (Xn+1, [Yn+1])

↗
Yn+1 rounded to grid

To maintain exchangeability:

need to fit µ̂ on (X1, [Y1]), . . . , (Xn, [Yn]), (Xn+1, y )
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Full conformal: computational challenges

Discretizing the model to restore theoretical guarantees:15

• Run a discretized algorithm for model fitting:

(X1,Y1), . . . , (X , y)
[ ]−→ (X1, [Y1]), . . . , (X , [y ])

fit model µ̂−→ [µ̂]

• Calculate residuals

Ri = |Yi − [µ̂](Xi )|, i = 1, . . . , n, Rn+1 = |y − [µ̂](X )|

• Check if |Rn+1| ≤
[
(1− α) quantile of R1, . . . ,Rn,Rn+1

]

Computational cost: A only needs to be rerun for each y in the grid

15Chen, Chun, & B. 2017, Discretized conformal prediction for efficient distribution-free inference
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Cross-validation methods

Holdout methods vs full conformal

(lose sample size) (high computational cost)

To avoid this tradeoff, can we use cross-validation?

Split data into k folds, {1, . . . , n} = A1 ∪ · · · ∪ AK

For i ∈ Ak , RCV
i = |Yi − µ̂−Ak

(Xi )| ← µ̂−Ak
is trained on data pts {1, . . . , n}\Ak

Ĉ (Xn+1) = µ̂(Xn+1)± Q1−α
{
RCV

1 , . . . ,RCV
n

}

↖
the d(1− α)(n + 1)e-th smallest value in the list

— Computational cost: K + 1 regressions

— Problem: theory from holdout setting no longer holds
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Cross-validation methods

Jackknife a.k.a. leave-one-out cross-validation (K = n)

Residuals RLOO
i = |Yi − µ̂−i (Xi )| ← µ̂−i is trained on data pts {1, . . . , n}\{i}

Ĉ (Xn+1) = µ̂(Xn+1)± Q1−α
{
RLOO

1 , . . . ,RLOO
n

}

— Predictive coverage under algorithmic stability assumption:16

P {|µ̂(Xn+1)− µ̂−i (Xn+1)| ≤ ε} ≥ 1− ν

16Steinberger & Leeb 2018, Conditional predictive inference for high-dimensional stable algorithms
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Jackknife+ & CV+

Jackknife+:17

Ĉ (Xn+1) =
[
Qα

{
µ̂−i (Xn+1)− RLOO

i

}
, Q1−α

{
µ̂−i (Xn+1) + RLOO

i

}]

Compare to jackknife:

Ĉ (Xn+1) =
[
Qα

{
µ̂(Xn+1)− RLOO

i

}
, Q1−α

{
µ̂(Xn+1) + RLOO

i

}]

17B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+
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Jackknife+ & CV+

? ?
µ̂(Xn+1)± RLOO

1

µ̂(Xn+1)± RLOO
2

µ̂(Xn+1)± RLOO
3

µ̂(Xn+1)± RLOO
n

.

.

.

Jackknife

?

?

µ̂−1(Xn+1)± RLOO
1

µ̂−2(Xn+1)± RLOO
2

µ̂−3(Xn+1)± RLOO
3

µ̂−n(Xn+1)± RLOO
n

.

.

.

Jackknife+
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Jackknife+ & CV+

Extension to K -fold CV+:18

Ĉ (Xn+1) =
[
Qα

{
µ̂−Ak

(Xn+1)− RCV
i

}
, Q1−α

{
µ̂−Ak

(Xn+1) + RCV
i

}]

Closely related to the cross-conformal prediction method19,20

18B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+

19Vovk 2015, Cross-conformal predictors

20Vovk et al 2018, Cross-conformal predictive distributions
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Jackknife+ & CV+

Theorem: For any distrib. P and any A, jackknife+ satisfies

P
{
Yn+1 ∈ Ĉ (Xn+1)

}
≥ 1− 2α.

(If also assume algorithmic stability, then ≥ 1− α− o(1))

Theorem: For any distrib. P and any A, K -fold CV+ satisfies

P
{
Yn+1 ∈ Ĉ (Xn+1)

}
≥
{

1− 2α− 1/K

1− 2α− 2K/n

 ≥ 1− 2α−
√

2/n.

21

22

21B., Candès, Ramdas, Tibshirani 2019, Predictive inference with the jackknife+

22Vovk et al 2018, Cross-conformal predictive distributions
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Jackknife+ & CV+

Proof idea: embed jackknife+ into a larger exchangeable problem

• Exchangeable data {(X1,Y1), . . . , (Xn+1,Yn+1)}

•
(
n+1

2

)
leave-two-out regressions: µ̃−{i,j} for 1 ≤ i , j ≤ n + 1

• We can observe n of these, i.e., µ̃−{i,n+1} = µ̂−i for 1 ≤ i ≤ n
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Cross-conformal

For a general score function — can use cross-conformal prediction:23,24

• Fit score function Ŝ (k) onk-th data set {(Xi ,Yi ) : i ∈ {1, . . . , n}\Ak}

• For i ∈ Ak define SCV
i = Ŝ (k)(Xi ,Yi )

• Prediction set

Ĉ (Xn+1) =
{
y : Ŝk(i)(Xn+1, y) ≤ SCV

i for at least α(n + 1) many i ’s
}

• Coverage guarantees as for jackknife+ / CV+

23Vovk 2015, Cross-conformal predictors

24Vovk et al 2018, Cross-conformal predictive distributions
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Generalizing CP to other definitions of risk

CP methods bound P
{
Yn+1 6∈ Ĉ (Xn+1)

}
= E

[
1{Yn+1 6∈ Ĉ (Xn+1)}

]

︸ ︷︷ ︸
zero/one loss

Idea — use CP-type approach to control other definitions of risk:25,26

• Example: FDR for flagging out-of-distribution data points

• Example: false pos./neg. rates if Y = a set of labels

• Example: accuracy rate for selecting pixels within an image

Figure 8: Multi-label prediction set examples on MS COCO. Black classes are correctly identified
(true positives), blue ones are spurious (false positives), and red ones are missed (false negatives).

Figure 9: Multi-label prediction set results on MS COCO. The risk and set sizes are plotted as
histograms over 1000 di↵erent random splits of MS COCO, with parameters ↵ = 0.1 and � = 0.1. We also
include a conformal baseline. For details see Section 5.2.

In Figure 8, we find that the conformal baseline returns larger prediction sets. The reason is that the notion
of coverage used by conformal prediction is more strict, requiring that all classes are covered. By contrast,
the RCPS method can incorporate less brittle loss functions, such as the false negative rate in (12).

5.3 Hierarchical classification

Next, we discuss the application of RCPS to prediction problems where there exists a hierarchy on K labels.
Here, we have a response variable y 2 {1, . . . , K} with the structure on the labels encoded as a tree with
nodes V and edges E with a designated root node, finite depth D, and K leaves, one for each label. To
represent uncertainty while respecting the hierarchical structure, we seek to predict a node ŷ 2 V that is as
precise as possible, provided that that is an ancestor of y. Note that with our tree structure, each v 2 V
can be interpreted as a subset of {1, . . . , K} by taking the set of all the leaf-node descendants of v, so this
setting is a special case of the set-valued prediction studied in this work.

We now turn to a loss function for this hierarchical label structure. Let d : V ⇥ V ! Z be the function
that returns the length of the shortest path between two nodes, let A : V ! 2V be the function that returns
the ancestors of its argument, and let P : V ! 2V be the function that returns the set of leaf nodes that are
descendants of its argument. Further define a hierarchical distance

dH(v, u) = inf
a2A(v)

{d(a, u)}.
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Generalizing CP to other definitions of risk

CP methods bound P
{
Yn+1 6∈ Ĉ (Xn+1)

}
= E

[
1{Yn+1 6∈ Ĉ (Xn+1)}

]

︸ ︷︷ ︸
zero/one loss

Idea — use CP-type approach to control other definitions of risk:25,26

• Example: FDR for flagging out-of-distribution data points

• Example: false pos./neg. rates if Y = a set of labels

• Example: accuracy rate for selecting pixels within an image

Figure 8: Multi-label prediction set examples on MS COCO. Black classes are correctly identified
(true positives), blue ones are spurious (false positives), and red ones are missed (false negatives).

Figure 9: Multi-label prediction set results on MS COCO. The risk and set sizes are plotted as
histograms over 1000 di↵erent random splits of MS COCO, with parameters ↵ = 0.1 and � = 0.1. We also
include a conformal baseline. For details see Section 5.2.

In Figure 8, we find that the conformal baseline returns larger prediction sets. The reason is that the notion
of coverage used by conformal prediction is more strict, requiring that all classes are covered. By contrast,
the RCPS method can incorporate less brittle loss functions, such as the false negative rate in (12).

5.3 Hierarchical classification

Next, we discuss the application of RCPS to prediction problems where there exists a hierarchy on K labels.
Here, we have a response variable y 2 {1, . . . , K} with the structure on the labels encoded as a tree with
nodes V and edges E with a designated root node, finite depth D, and K leaves, one for each label. To
represent uncertainty while respecting the hierarchical structure, we seek to predict a node ŷ 2 V that is as
precise as possible, provided that that is an ancestor of y. Note that with our tree structure, each v 2 V
can be interpreted as a subset of {1, . . . , K} by taking the set of all the leaf-node descendants of v, so this
setting is a special case of the set-valued prediction studied in this work.

We now turn to a loss function for this hierarchical label structure. Let d : V ⇥ V ! Z be the function
that returns the length of the shortest path between two nodes, let A : V ! 2V be the function that returns
the ancestors of its argument, and let P : V ! 2V be the function that returns the set of leaf nodes that are
descendants of its argument. Further define a hierarchical distance

dH(v, u) = inf
a2A(v)

{d(a, u)}.
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Limitations of distribution-free prediction

The guarantee for conformal prediction / holdout methods:

P
{
Yn+1 ∈ Ĉ (Xn+1)

}
≥ 1− α

↗
w.r.t. distribution of (X1,Y1), . . . , (Xn+1,Yn+1) (assumed to be exchangeable)

Limitations:

• The guarantee is on average over the training data

• The guarantee is on average over the test point Xn+1

• And, what if the data is not exchangeable?
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The PAC framework

Limitation 1: The guarantee is on average over the training data

All guarantees so far:

P
{
Yn+1 ∈ Ĉ (Xn+1)

}
= E

[
P

{
Yn+1 ∈ Ĉ (Xn+1)

∣∣∣∣∣
training

data

}]
≥ 1− α

The PAC (Probably Approximately Correct) framework:

P

{
P

{
Yn+1 ∈ Ĉ (Xn+1)

∣∣∣∣∣
training

data

}
≥ 1− α

}
≥ 1− δ

• Split conformal satisfies PAC with no additional assumptions27

• No PAC guarantee is possible for full conformal or jackknife+

(unless we make further assumptions)28

27Vovk 2012, Conditional validity of inductive conformal predictors

28Bian & B. 2021, Training-conditional coverage for distribution-free predictive inference
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Conditional prediction

Limitation 2: The guarantee is on average over the test point Xn+1

Is it possible to provide prediction that’s valid conditional on Xn+1, i.e.,

P
{
Yn+1 ∈ Ĉ (Xn+1)

∣∣∣ Xn+1

}
≥ 1− α ?

( Motivation—the marginal guarantee doesn’t exclude, e.g.,

90% of individuals have 100% coverage / 10% of individuals have 0% coverage )

This is impossible for nonatomic X (i.e., PX (x) = 0 for all x ∈ X ):29,30

Theorem: If X is nonatomic,

E
[
length(Ĉ (Xn+1))

]
=∞ for any Ĉ that’s valid distribution-free

︸ ︷︷ ︸
expected length when data

iid∼ P

︸ ︷︷ ︸
coverage must hold when data

iid∼ any distribution

29Vovk 2012, Conditional validity of inductive conformal predictors

30Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression
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Conditional prediction

Can we relax the notion of conditionally valid coverage,

to obtain a nontrivial Ĉ?

(1− α, δ)-conditional coverage:31 for any P & any X with PX (X ) ≥ δ,

P
{
Yn+1 ∈ Ĉ (Xn+1)

∣∣∣ Xn+1 ∈ X
}
≥ 1− α w.r.t. data

iid∼ P.

Theorem: for nonatomic PX , if Ĉ satisfies (1 − α, δ)-conditional cov.,

then

E
[
length(Ĉ (Xn+1))

]
≥
(

min. length of any oracle method

with 1− αδ coverage for P

)

↖
trivially achieves (1− α, δ)-conditional cov.

(and must be very wide)

31B., Candès, Ramdas, Tibshirani 2019, The limits of distribution-free conditional predictive inference
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Conditional prediction

Conditional on bins: partition X = X1 ∪ · · · ∪ XK ,

& require P
{
Yn+1 ∈ Ĉ (Xn+1)

∣∣∣ Xn+1 ∈ Xk

}
≥ 1− α for each k32,33

• For each k , data points {(Xi ,Yi ) : Xi ∈ Xk} are exchangeable

 run CP separately for each k to guarantee bin-conditional cov.

• Note — the model µ̂ can still be fitted on the entire data set!

An application — fairness with respect to subpopulations34

32Vovk 2012, Conditional validity of inductive conformal predictors

33Lei & Wasserman 2014, Distribution-free prediction bands for nonparametric regression

34Romano, B., Sabatti, Candès 2019, With malice toward none: assessing uncertainty via equalized coverage
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Conditional prediction

Extension — distributional conformal prediction35

• Estimate the conditional distribution of Y |X  F̂ (y |x)

• Nonconformity score Ŝ(x , y) = |F̂ (y |x)− 0.5|
— CP is valid with any score ⇒ finite-sample marginal cov.

— If F̂ satisfies consistency ⇒ asymptotic conditional cov.

35Chernozhukov et al 2019, Distributional conformal prediction
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Conditional prediction

Extension — a localized form of the prediction guarantee:36

Construct Ĉ (Xn+1) using a kernel around the test point,

e.g., only the nearest neighbors of Xn+1

Define weights wi = w(Xi ,Xn+1), then

Ĉ (Xn+1) =
{
y : Ŝ(Xn+1, y) ≤ Q1−α̃

{
Si with weight wi

}}

↖

adjust α to maintain coverage

 achieves marginal coverage, and asymptotic conditional coverage

36Guan 2020, Conformal prediction with localization
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Settings beyond exchangeability

Limitation 3: what if data is not exchangeable?

Conformal prediction (or holdout method) assumes:

training & test data are from the same distribution

Possible violations:

• Train & test data are from different distributions (transfer learning)

• Data distribution changes over time (drift / changepoints)

• Dependence (over time / spatial location / network / etc)
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Weighted conformal prediction

The covariate shift setting:

• Marginal distribution of X is different in training vs. test data

(e.g., some subpopulations are over- or under-represented in

the training data)

• But, distribution of Y |X is the same

P train = P train
X × PY |X , P test = P test

X × PY |X
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Weighted conformal prediction

Assuming we know the shift (i.e., dP test
X (x) ∝

known fn.︷ ︸︸ ︷
w(x) · dP train

X (x)),

conformal can adjust for the shift with weighted exchangeability37,38

Given n + 1 data points...

• With (unweighted) exchangeability,

each one is equally likely to be the test point

 Rn+1 ≤ Q1−α{R1, . . . ,Rn+1} with prob. 1− α

• With weighted exchangeability, the distribution is nonuniform:

P {(x , y) is the test point} ∝ w(x)

 need to compute a weighted quantile: Q1−α
{
Ri with weight wi}

37Tibshirani, B., Ramdas, & Candès 2019, Conformal prediction under covariate shift

38Hu & Lei 2020, A distribution-free test of covariate shift using conformal prediction
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Weighted conformal prediction

Application: survival analysis & censored data39

• “Clean” data (Xi ,Yi ) = (features, survival time)

• Censored observations (Xi , Ỹi ) where Ỹi = min{Ci ,Yi}

• Main idea: choose a cutoff c0 so that “usually” Yi ≤ c0,

& keep only data with Ci ≥ c0 (i.e., most Y ’s are not censored)

— On this data set, can use CP to predict survival time Y

— But, this may be a different distribution

(population with Ci ≥ c0 6= general population)

— If distrib. of C |X known,

can use weighted CP to correct for distribution shift

39Candès, Lei, Ren 2021, Conformalized survival analysis
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Weighted conformal prediction

Application: estimating individual treatment effects40

• Data (Xi ,Ti ,Yi ) = (features, treatment group = 0 or 1, outcome)

• ITEi = (value of Yi , if Ti = 1)− (value of Yi , if Ti = 0)

• Challenge: treatment assignment may depend on X

• Main idea: if propensity score P {T = 1 | X = x} is known,

can use weighted CP to adjust for X |T = 1 versus X |T = 0

40Lei & Candès 2020, Conformal inference of counterfactuals and individual treatment effects
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Weighted conformal prediction

An extension: the design problem (active learning)41

• Training data (Xi ,Yi ) ∼ P

• Test data Xn+1 ∼ P̃X , where P̃X depends on training data

• Can use an extension of weighted CP for valid predictive inference

41Fannjiang et al 2022, Conformal prediction for the design problem
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Weighted conformal prediction

A related problem — label shift (for categorical Y / classification)42

• Marginal distribution of Y is different in training vs. test data

(e.g., some subpopulations are over- or under-represented in

the training data)

• But, distribution of X |Y is the same

P train = P train
Y × PX |Y , P test = P test

Y × PX |Y

If the label shift is known,

can use weighted exchangeability to guarantee coverage

42Podkopaev & Ramdas 2021, Distribution-free uncertainty quantification for classification under label shift
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Weighted conformal prediction

Covariate shift & label shift methods — both assume dPtest

dPtrain is known

If the distribution shift is unknown, but can be bounded:43

construct Ĉ that is valid assuming Df

(
P test||P train

)
≤ ρ

↗
f -divergence (e.g., KL-divergence)

43Cauchois et al 2020, Robust Validation: Confident Predictions Even When Distributions Shift
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Online / streaming / time series data

Conformal prediction can also be applied to an online setting...

• If data points are iid,

conformal p-values are valid (and ⊥⊥) at each time t

⇒ can use conformal to predict / to test for changepoints44

• Can bound cumulative error under arbitrary distribution drift45,46

• If data points form a time series,

CP achieves asymptotic coverage under some assumptions47

44Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

45Gibbs & Candès 2021, Adaptive conformal inference under distribution shift

46Feldman et al 2022, Conformalized Online Learning: Online Calibration Without a Holdout Set

47Xu & Xie 2021, Conformal prediction interval for dynamic time-series
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Robustness & nonsymmetric algorithms

Theory for CP relies on:

1. (X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1) are exchangeable (e.g., i.i.d.)

2. Regression algorithm A treats input data points symmetrically

Challenges in practice:

1. (X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1) may be nonexchangeable

(e.g., distribution drift, dependence over time, ...)

2. May want to choose A that treats data nonsymmetrically

(e.g., weighted regression, autoregressive model, ...)
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Robustness & nonsymmetric algorithms

Nonexchangeable conformal prediction (nexCP):48

Draw a random index K with P {K = i} = wi , then:

• Fit model to training+test data

µ̂ = A((X1,Y1), . . . , (Xn+1, y), . . . , (Xn,Yn), (XK ,YK ))

• Compute residuals

Ri = |Yi − µ̂(Xi )| for i ≤ n; Rn+1 = |y − µ̂(Xn+1)|

• Check if Rn+1 ≤ Q1−α
{
Ri with weight wi

}
↗

fixed weights wi ≥ 0, e.g., w1 ≤ w2 ≤ . . . for distrib. drift

Ĉ (Xn+1) = {all y ∈ R for which the above holds}

• Theory: coverage ≥ 1− α−∑i wi · dTV(data, dataswap i & n + 1)

48B., Candès, Ramdas, Tibshirani 2022, Conformal prediction beyond exchangeability
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Beyond the prediction problem

What are inference questions we might want to ask, distribution-free?

• Prediction: the unobserved response Yn+1 will lie in [some range]

• Effect size: the dependence between X and Y lies in [some range]

• Independence: test if X & Y independent given [some confounders]

• Regression: the distribution of Y given X satisfies [some property]

↗
mostly impossible (if X is continuous), or trivial (if X is discrete with bounded # values)

• Hardness results for testing independence49

• Hardness results for inference on E [Y | X ]50,51,52

49Shah & Peters 2018, The hardness of conditional independence testing and the generalised covariance measure

50Vovk, Gammerman, Shafer 2005, Algorithmic Learning in a Random World

51B. 2020, Is distribution-free inference possible for binary regression?

52Lee & B. 2021, Distribution-free inference for regression: discrete, continuous, and in between
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Calibration

Calibration = an alternative definition of validity for a predictor

• Perfect calibration: E [Y | f (X )] = f (X ) almost surely

• Approx. calibration:53
∣∣E [Y | f (X )]− f (X )

∣∣ ≤ ε w/ prob. ≥ 1− α

53Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Calibration

Distribution-free calibration is possible

only if the set of output values is ≤ countably infinite:54

• Let error level α be fixed, and let sample size n→∞
• A sequence of functions fn is asymptotically calibrated if εn = oP(1)

• If there exists an asymptotically calibrated sequence fn, then

lim sup
n→∞

∣∣{possible values of fn(X )}
∣∣ ≤ countably infinite

If f (X ) takes finitely many values... an example procedure:

• Use data i = 1, . . . , n2 to partition into bins X1 ∪ · · · ∪ XK

(e.g., Xk = {x : k−1
N

< µ̂(x) ≤ k
N
} )

• Use holdout set i = n
2 + 1, . . . , n to estimate E [Y | X ∈ Xk ]

54Gupta et al 2020, Distribution-free binary classification: prediction sets, confidence intervals and calibration
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Summary

Distribution-free prediction means that we can:

• Start with any algorithm / modeling procedure...

• ...and then calibrate it to have valid predictive coverage

The framework relies on assuming:

• Data is exchangeable (e.g., i.i.d. data)

• Or, data has a bounded deviation from exchangeability

• Or, a known deviation from exchangeability (e.g., covariate shift)
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Open questions

• How to detect or adapt to violations of exchangeability?

• Computationally efficient versions of conformal / jackknife+,

when model alg. is expensive / when Y is multidimensional / etc

• Can we use the data to guide choices (e.g., score function Ŝ(x , y)),

without the need for an additional split of the training data?

• Finite-sample guarantees for approximate local/conditional validity?

• Beyond prediction — can we find weaker definitions of validity

(for testing conditional indep. / for inference on regression / etc)

for which distribution-free inference is possible?
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