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Conformal testing and this paper

Conformal prediction depends on the IID (or
exchangeability) assumption.
Under the IID assumption, conformal p-values are IID and
uniformly distributed on [0,1].
This is at the basis of conformal prediction but can also be
used for conformal testing: if we want to test the IID
assumption, we can instead test the independence and
uniformity of the p-values.
This turns the composite (and massive) null hypothesis of
exchangeability into a simple null hypothesis.
A possible application: when do we retrain a prediction
algorithm (traditional one, or conformal predictor)?
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Batch vs online hypothesis testing
The usual mode of testing in statistics is batch: we are
given a batch of data, and the task is to decide whether to
reject the null hypothesis.
In the online mode, we start from a unit capital and keep
gambling against the null hypothesis (making sure capital
≥ 0).
Our current capital then measures the degree to which the
null hypothesis has been falsified.
By the Ville inequality: the probability our capital ever
exceeds c is at most 1/c.
In many cases the online mode is more relevant: think,
e.g., of retraining prediction algorithms.
It’s becoming a popular direction of research:
“game-theoretic statistics” (Shafer, Grünwald, Ramdas,
Wang,. . . ).
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Efficiency of conformal testing

Conformal testing is a valid mode of testing.
But is it efficient?
For a long time I doubted it was, but actually it might be.
In simple cases where we have natural benchmarks, it is
competitive with the benchmarks.
COPA 2021: efficiency in the problem of changepoint
detection.
This paper and talk: efficiency against Markov alternatives
to IID.
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Conformal test martingales

The process describing the evolution of our capital when
gambling against conformal p-values: “conformal test
martingale”.
For gambling against the uniformity of the p-values we use
betting functions, i.e., functions f : [0,1] → [0,∞] that
integrate to 1.
In conformal testing, at step n a betting function fn is
chosen (in a measurable manner) with the knowledge of
the first n − 1 p-values p1, . . . ,pn−1.
The product Sn := f1(p1) . . . fn(pn), n = 0,1, . . . (with
S0 := 1), is the corresponding conformal test martingale.
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Gambling against a Markov alternative

The details can be found in the paper; my description will
be high-level.
We are interested in the binary case: we observe
z1, z2, . . . , and the observations are zi ∈ {0,1}.
The null hypothesis: IID; we are flipping a coin with the
same probability of 1 (="heads").
Suppose that in fact zi are generated by a Markov
distribution.
It is sufficient to use the trivial nonconformity measure: the
nonconformity score is αi := zi .
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Details of gambling (1)

Under the alternative hypothesis, the distribution of the
conformal p-values is not uniform.
It is known that the optimal betting function is the true
probability density (“Kelly gambling”); shown in, e.g., the
paper by Fedorova et al. (ICML 2012).
If we know the true data-generating distribution, we can
compute the probability density for pn (the nth conformal
p-value) after observing p1, . . . ,pn−1 using Bayesian
methods.
The “parameter” is z1, z2, . . . ; the prior distribution is the
Markov alternative; and the “observations” pn are
computed using the usual formulas of conformal prediction.
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Details of gambling (2)

In the paper we have two versions of our conformal test
martingale: proper (“Bayes–Kelly”) and simplified
(“simplified Bayes–Kelly”).
The Bayes–Kelly martingale uses as the betting function
the posterior distribution of pn given p1, . . . ,pn−1.
It can be implemented efficiently as an algorithm that
maintains weights for the parameters.
Its sufficient to have the “aggregated” weights wn

k ,L at time
n, where k is the number of 1s so far and L is the last bit zn.
But wn

k ,L ≈ 0 outside a very narrow interval of k (k ≈ n/2 in
the symmetric case).
The simplified Bayes–Kelly martingale: we just ignore the
ws outside the expected value of k .
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Two ways of mixing

I have explained how to gamble against a simple
alternative.
What to do if the alternative is composite?
For each element of the composite alternative we construct
a conformal test martingale, and then average all those
martingales.
Two natural ways of doing so:

We can do it on paper, evaluating all the integrals.
Or we can replace the composite alternative by a dense
grid and add an external loop to our code.
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Ramdas et al.’s work

Aaditya Ramdas, Johannes Ruf, Martin Larsson, and
Wouter Koolen (2022).
Testing exchangeability: fork-convexity, supermartingales,
and e-processes.
International Journal of Approximate Reasoning
141:83–109 (Glenn Shafer Special Issue).
They introduce a process Rn that is, essentially, a test
martingale under the IID assumption (more later).
The process is designed to be efficient for all Markov
alternatives, but the construction only works in toy
situations (such as binary with Markov or changepoint
alternatives).
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Model situation

In choosing the model situation, we essentially follow
Ramdas et al.
Markov(π1|0, π1|1) is the probability distribution of a Markov
chain with the transition probabilities π1|0 for transitions
0 → 1 and π1|1 for transitions 1 → 1. The probability that
the first observation is 1 will always be assumed 0.5 (plays
a very minor role).
Our null hypothesis is, essentially, that π1|0 = π1|1.
We consider two cases:

In the hard case, the model is Markov(0.4,0.6).
In the easy case, the model is Markov(0.1,0.9).
So that the hard case is harder to distinguish from the null
hypothesis than the easy case.

The number of observations is N := 103.
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Simplifying Bayes–Kelly (easy case)

Here we plot wn
k ,0 + wn

k ,1 vs k (at the last step, n = 103).
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Simplifying Bayes–Kelly (hard case)
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Benchmarks (1)

The upper benchmark is

UBn :=
Markov(π1|0, π1|1)([z1, . . . , zn])

Ber(0.5)([z1, . . . , zn])
,

where Ber(π) is the coin-tossing distribution with probability
of success π.
The lower benchmark is

LBn :=
Markov(π1|0, π1|1)([z1, . . . , zn])

Ber(π̂)([z1, . . . , zn])
,

where π̂ := k/n (the maximum likelihood estimate) and
k = k(n) is the number of 1s among z1, . . . , zn.
By definition, UB0 = LB0 := 1.
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Benchmarks (2)

The upper benchmark (a likelihood ratio) is a martingale
only under Ber(0.5) (and not under any other element of
the null hypothesis), and so impossible to attain with
“honest” methods such as conformal testing.
The lower benchmark is valid under any element of the null
hypothesis, but it does not generalize to complicated
non-binary cases.
Ramdas et al.’s process R: mixture of the lower benchmark
over all Markov alternatives (over a Jeffreys-type prior).
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Paths in the easy case
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Paths in the hard case
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Boxplots in the easy case (103 simulations)
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Boxplots in the hard case
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Easy case (in the book)
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Hard case (in the book)
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Thank you for your attention!
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