
Tensor Train Kernel Learning
for Gaussian Process

Regression

Max Kirstein
David Sommer

Martin Eigel

ProFit Project ReLkat - Reinforcement Learning for complex
automation engineering

COPA 2022

August 25, 2022

Gaussian Process Regression

Goal: learn approximation f of a function

Φ: Ω −→ R, Ω = [a, b]d ⊂ Rd,

based on N realizations of random variables

X = [x(1), . . . , x(N)] with x(i) ∈ Ω, x(i) ∼ ρ,

y = [y(1), . . . , y(N)] with y(i) = Φ(x(i))
for i = 1, . . . , N .

A Gaussian Process (GP) prior

f0(x) ∼ GP(m0(x), k0(x, x′))
over f is characterised by

a mean function m0 : Rd → R
a spd covariance function k0 : Rd × Rd → R

2/18 Tensor Train Kernel Learning

Gaussian Process Regression

Goal: learn approximation f of a function

Φ: Ω −→ R, Ω = [a, b]d ⊂ Rd,

based on N realizations of random variables

X = [x(1), . . . , x(N)] with x(i) ∈ Ω, x(i) ∼ ρ,

y = [y(1), . . . , y(N)] with y(i) = Φ(x(i))
for i = 1, . . . , N .

A Gaussian Process (GP) prior

f0(x) ∼ GP(m0(x), k0(x, x′))
over f is characterised by

a mean function m0 : Rd → R
a spd covariance function k0 : Rd × Rd → R

2/18 Tensor Train Kernel Learning

Gaussian Process Regression

For a finite number of inputs, the function values of the GP prior have a joint
Gaussian distribution

f0(X) = [f0(x(1)), . . . , f0(x(N))] ∼ N (m0(X), k0(X, X)),
with

mean vector m0(X) = [m0(x(1)), . . . , m0(x(N))]
and covariance matrix (k0(X, X))ij = k0(x(i), x(j)) for i, j = 1, . . . , N

To predict at new points X∗ = (x(1)
∗ , . . . , x

(M)
∗) we condition the GP on the data,

yielding the posterior

f∗(X∗) ∼ N (m∗(X∗), k∗(X∗, X∗))
with

m∗(X∗) = m0(X∗) − k0(X∗, X)k0(X, X)−1(m0(X) − y)),
k∗(X∗, X∗) = k0(X∗, X∗) − k0(X∗, X)k0(X, X)−1k0(X, X∗).

From now on we assume m0 ≡ 0.

3/18 Tensor Train Kernel Learning

Gaussian Process Regression

For a finite number of inputs, the function values of the GP prior have a joint
Gaussian distribution

f0(X) = [f0(x(1)), . . . , f0(x(N))] ∼ N (m0(X), k0(X, X)),
with

mean vector m0(X) = [m0(x(1)), . . . , m0(x(N))]
and covariance matrix (k0(X, X))ij = k0(x(i), x(j)) for i, j = 1, . . . , N

To predict at new points X∗ = (x(1)
∗ , . . . , x

(M)
∗) we condition the GP on the data,

yielding the posterior

f∗(X∗) ∼ N (m∗(X∗), k∗(X∗, X∗))
with

m∗(X∗) = m0(X∗) − k0(X∗, X)k0(X, X)−1(m0(X) − y)),
k∗(X∗, X∗) = k0(X∗, X∗) − k0(X∗, X)k0(X, X)−1k0(X, X∗).

From now on we assume m0 ≡ 0.

3/18 Tensor Train Kernel Learning

Gaussian Process Regression

For a finite number of inputs, the function values of the GP prior have a joint
Gaussian distribution

f0(X) = [f0(x(1)), . . . , f0(x(N))] ∼ N (m0(X), k0(X, X)),
with

mean vector m0(X) = [m0(x(1)), . . . , m0(x(N))]
and covariance matrix (k0(X, X))ij = k0(x(i), x(j)) for i, j = 1, . . . , N

To predict at new points X∗ = (x(1)
∗ , . . . , x

(M)
∗) we condition the GP on the data,

yielding the posterior

f∗(X∗) ∼ N (m∗(X∗), k∗(X∗, X∗))
with

m∗(X∗) = m0(X∗) − k0(X∗, X)k0(X, X)−1(m0(X) − y)),
k∗(X∗, X∗) = k0(X∗, X∗) − k0(X∗, X)k0(X, X)−1k0(X, X∗).

From now on we assume m0 ≡ 0.

3/18 Tensor Train Kernel Learning

Gaussian Process Regression

The covariance function k0 usually depends on some set of hyper-parameters θ, i.e.

k0(x, x′) = k0(x, x′|θ).
For the RBF kernel

kRBF(x, x′) = σ2
f exp

(
− 1

2ℓ
∥x − x′∥2

)
we have

the prior standard deviation σf , i.e. signal variance

the lengthscale ℓ, determining correlation decay rate with increasing distance
between inputs

With the noise variance σn, the set of hyper-parameters is given by
θ = {σf , ℓ, σn}.
GP training: maximise marginal (log-)likelihood of targets over θ:

log p(y|X, θ) ∝ −y⊺K−1
θ y − log |Kθ|

with Kθ = k0(X, X).

4/18 Tensor Train Kernel Learning

Gaussian Process Regression

The covariance function k0 usually depends on some set of hyper-parameters θ, i.e.

k0(x, x′) = k0(x, x′|θ).
For the RBF kernel

kRBF(x, x′) = σ2
f exp

(
− 1

2ℓ
∥x − x′∥2

)
we have

the prior standard deviation σf , i.e. signal variance

the lengthscale ℓ, determining correlation decay rate with increasing distance
between inputs

With the noise variance σn, the set of hyper-parameters is given by
θ = {σf , ℓ, σn}.

GP training: maximise marginal (log-)likelihood of targets over θ:

log p(y|X, θ) ∝ −y⊺K−1
θ y − log |Kθ|

with Kθ = k0(X, X).

4/18 Tensor Train Kernel Learning

Gaussian Process Regression

The covariance function k0 usually depends on some set of hyper-parameters θ, i.e.

k0(x, x′) = k0(x, x′|θ).
For the RBF kernel

kRBF(x, x′) = σ2
f exp

(
− 1

2ℓ
∥x − x′∥2

)
we have

the prior standard deviation σf , i.e. signal variance

the lengthscale ℓ, determining correlation decay rate with increasing distance
between inputs

With the noise variance σn, the set of hyper-parameters is given by
θ = {σf , ℓ, σn}.
GP training: maximise marginal (log-)likelihood of targets over θ:

log p(y|X, θ) ∝ −y⊺K−1
θ y − log |Kθ|

with Kθ = k0(X, X).

4/18 Tensor Train Kernel Learning

Feature Extraction for GPs

Let

fW : Rd → Z
denote a feature extractor with parameters W mapping to a latent space Z .

Now, assume the composite kernel

k(x, x′|θ) := k̂(fW (x), fW (x′)|θ),
where

k̂ : Z × Z → R
is a base kernel with hyper-parameters θ, e.g. RBF or linear kernel, and

θ := {W, θ}
are the joint hyper-parameters.
Possible feature extractors:

Deep neural networks, W are the weights ↪→ DKL [WHSX16]

Tensorized function spaces, W is the coefficient tensor ↪→ TTKL

5/18 Tensor Train Kernel Learning

Feature Extraction for GPs

Let

fW : Rd → Z
denote a feature extractor with parameters W mapping to a latent space Z .
Now, assume the composite kernel

k(x, x′|θ) := k̂(fW (x), fW (x′)|θ),
where

k̂ : Z × Z → R
is a base kernel with hyper-parameters θ, e.g. RBF or linear kernel, and

θ := {W, θ}
are the joint hyper-parameters.

Possible feature extractors:

Deep neural networks, W are the weights ↪→ DKL [WHSX16]

Tensorized function spaces, W is the coefficient tensor ↪→ TTKL

5/18 Tensor Train Kernel Learning

Feature Extraction for GPs

Let

fW : Rd → Z
denote a feature extractor with parameters W mapping to a latent space Z .
Now, assume the composite kernel

k(x, x′|θ) := k̂(fW (x), fW (x′)|θ),
where

k̂ : Z × Z → R
is a base kernel with hyper-parameters θ, e.g. RBF or linear kernel, and

θ := {W, θ}
are the joint hyper-parameters.
Possible feature extractors:

Deep neural networks, W are the weights ↪→ DKL [WHSX16]

Tensorized function spaces, W is the coefficient tensor ↪→ TTKL

5/18 Tensor Train Kernel Learning

Tensor Kernel Learning

Consider the case Z = R.
Start with a set of basis functions

Pαi
: R → R, αi = 1, . . . , Ji, Ji ∈ N, i = 1, . . . , d

and set for all x = (x1, . . . , xd) ∈ Ω

fW (x) =
J1∑

α1=1
· · ·

Jd∑
αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi) (1)

with coefficient tensor

W ∈ RJ1×...×Jd.

6/18 Tensor Train Kernel Learning

Tensor Kernel Learning

Consider the case Z = R.
Start with a set of basis functions

Pαi
: R → R, αi = 1, . . . , Ji, Ji ∈ N, i = 1, . . . , d

and set for all x = (x1, . . . , xd) ∈ Ω

fW (x) =
J1∑

α1=1
· · ·

Jd∑
αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi) (1)

with coefficient tensor

W ∈ RJ1×...×Jd.

Remarks:

Potentially high expressive power (think of Pαi
as polynomials up to degree

d − 1)

For Ji ≡ J , W has storage complexity of Jd ↪→ curse of dimensionality

6/18 Tensor Train Kernel Learning

Alleviating the curse of dimensionality: Tensor Trains

Figure: A full tensor W of order 5

Figure: A Tensor Train (TT) decomposition of W with TT ranks (r1, r2, r3, r4)

7/18 Tensor Train Kernel Learning

Alleviating the curse of dimensionality: Tensor Trains

Recall

fW (x) =
J1∑

α1=1
· · ·

Jd∑
αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi) (2)

A low-rank TT compression of the coefficient tensor W reads

Wα1,...,αd
≈

r0∑
k0=1

. . .
rd∑

kd=1

d∏
i=1

V
(i)

ki−1,αi,ki
(3)

with

V (i) ∈ Rri−1×Ji×ri, i = 1, . . . , d,

r0 = rd = 1
TT ranks r1, . . . , rd−1 determining accuracy of the compression.

For every W , there exist TT-ranks such that equality holds in (3) [Ose11].

In our work: Optimise W only on a manifold of fixed TT rank.

8/18 Tensor Train Kernel Learning

Alleviating the curse of dimensionality: Tensor Trains

Recall

fW (x) =
J1∑

α1=1
· · ·

Jd∑
αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi) (2)

A low-rank TT compression of the coefficient tensor W reads

Wα1,...,αd
≈

r0∑
k0=1

. . .
rd∑

kd=1

d∏
i=1

V
(i)

ki−1,αi,ki
(3)

with

V (i) ∈ Rri−1×Ji×ri, i = 1, . . . , d,

r0 = rd = 1
TT ranks r1, . . . , rd−1 determining accuracy of the compression.

For every W , there exist TT-ranks such that equality holds in (3) [Ose11].

In our work: Optimise W only on a manifold of fixed TT rank.

8/18 Tensor Train Kernel Learning

Alleviating the curse of dimensionality: Tensor Trains

Recall

fW (x) =
J1∑

α1=1
· · ·

Jd∑
αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi) (2)

A low-rank TT compression of the coefficient tensor W reads

Wα1,...,αd
≈

r0∑
k0=1

. . .
rd∑

kd=1

d∏
i=1

V
(i)

ki−1,αi,ki
(3)

with

V (i) ∈ Rri−1×Ji×ri, i = 1, . . . , d,

r0 = rd = 1
TT ranks r1, . . . , rd−1 determining accuracy of the compression.

For every W , there exist TT-ranks such that equality holds in (3) [Ose11].

In our work: Optimise W only on a manifold of fixed TT rank.

8/18 Tensor Train Kernel Learning

Alleviating the curse of dimensionality: Tensor Trains

With Ji ≡ J , the coefficient tensor W of a fully tensorized function

fW (x) =
∑

α1,...,αd

Wα1,...,αd

∏
i

Pαi
(xi) (4)

has storage complexity O(Jd).

On the other hand, the coefficient Tensor Train V of

fV (x) =
∑

α1,...,αd

∑
k0,...,kd

∏
i

V
(i)

ki−1,αi,ki
Pαi

(xi) (5)

has storage complexity O(Jdr2), where r = maxi=1,...,d−1{ri}.

The set of Tensor Trains with fixed TT-rank r = (r1 . . . , rd) is usually denoted Mr.

9/18 Tensor Train Kernel Learning

Alleviating the curse of dimensionality: Tensor Trains

With Ji ≡ J , the coefficient tensor W of a fully tensorized function

fW (x) =
∑

α1,...,αd

Wα1,...,αd

∏
i

Pαi
(xi) (4)

has storage complexity O(Jd).

On the other hand, the coefficient Tensor Train V of

fV (x) =
∑

α1,...,αd

∑
k0,...,kd

∏
i

V
(i)

ki−1,αi,ki
Pαi

(xi) (5)

has storage complexity O(Jdr2), where r = maxi=1,...,d−1{ri}.

The set of Tensor Trains with fixed TT-rank r = (r1 . . . , rd) is usually denoted Mr.

9/18 Tensor Train Kernel Learning

Pre-training with the Alternating Linear Scheme

The loss functional of the risk minimisation

L(f) :=
∫

Ω
(Φ(x) − f (x))2 ρ(dx) (6)

is approximated by the empirical risk minimisation for a set of iid realisations

x(n) ∼ ρ, yn = Φ(x(n)),
for n = 1, . . . , N , i.e.

L(f) ≈ 1
N

N∑
n=1

(
y(n) − f (x(n))

)2
. (7)

To reduce over-fitting, we introduce regularisation, minimising

L̂(f) =
N∑

n=1

(
y(n) − f (x(n))

)2
+ δ∥f∥2

F , (8)

for δ > 0 and F := H1
mix(Ω) =

⊗d
i=1 H1([a, b]).

10/18 Tensor Train Kernel Learning

Pre-training with the Alternating Linear Scheme

The loss functional of the risk minimisation

L(f) :=
∫

Ω
(Φ(x) − f (x))2 ρ(dx) (6)

is approximated by the empirical risk minimisation for a set of iid realisations

x(n) ∼ ρ, yn = Φ(x(n)),
for n = 1, . . . , N , i.e.

L(f) ≈ 1
N

N∑
n=1

(
y(n) − f (x(n))

)2
. (7)

To reduce over-fitting, we introduce regularisation, minimising

L̂(f) =
N∑

n=1

(
y(n) − f (x(n))

)2
+ δ∥f∥2

F , (8)

for δ > 0 and F := H1
mix(Ω) =

⊗d
i=1 H1([a, b]).

10/18 Tensor Train Kernel Learning

Pretraining with the Alternating Linear Scheme

The minimisation problem reads

min
fV

L̂(fV) =
N∑

n=1

(
y(n) − fV (x(n))

)2
+ δ∥fV ∥2

F . (9)

for fV parametrised by a Tensor Train V ∈ Mr.

Choosing the basis functions Pαi
as H1([a, b])-orthonormal polynomials, the tensor

structure and Parseval’s identity yield

∥fV ∥2
F = ∥V ∥2

F ,

where ∥.∥F denotes the Frobenius-norm in full tensor space.

Hence, we arrive at the finite dimensional minimisation problem

min
V ∈Mr

L̂(fV) = min
V ∈Mr

1
N

N∑
n=1

(
y(n) − fV (x(n))

)2
+ δ∥V ∥2

F , (10)

11/18 Tensor Train Kernel Learning

Pretraining with the Alternating Linear Scheme

The minimisation problem reads

min
fV

L̂(fV) =
N∑

n=1

(
y(n) − fV (x(n))

)2
+ δ∥fV ∥2

F . (9)

for fV parametrised by a Tensor Train V ∈ Mr.

Choosing the basis functions Pαi
as H1([a, b])-orthonormal polynomials, the tensor

structure and Parseval’s identity yield

∥fV ∥2
F = ∥V ∥2

F ,

where ∥.∥F denotes the Frobenius-norm in full tensor space.

Hence, we arrive at the finite dimensional minimisation problem

min
V ∈Mr

L̂(fV) = min
V ∈Mr

1
N

N∑
n=1

(
y(n) − fV (x(n))

)2
+ δ∥V ∥2

F , (10)

11/18 Tensor Train Kernel Learning

Pretraining with the Alternating Linear Scheme

The minimisation problem reads

min
fV

L̂(fV) =
N∑

n=1

(
y(n) − fV (x(n))

)2
+ δ∥fV ∥2

F . (9)

for fV parametrised by a Tensor Train V ∈ Mr.

Choosing the basis functions Pαi
as H1([a, b])-orthonormal polynomials, the tensor

structure and Parseval’s identity yield

∥fV ∥2
F = ∥V ∥2

F ,

where ∥.∥F denotes the Frobenius-norm in full tensor space.

Hence, we arrive at the finite dimensional minimisation problem

min
V ∈Mr

L̂(fV) = min
V ∈Mr

1
N

N∑
n=1

(
y(n) − fV (x(n))

)2
+ δ∥V ∥2

F , (10)

11/18 Tensor Train Kernel Learning

Pretraining with the Alternating Linear scheme (ALS)

Idea of ALS [HRS11]: Sweep back and forth over the tensor network, sequentially
performing

min
V (j)

1
N

N∑
n=1

(
Φ(x(n)) − fV (x(n))

)2
+ δ∥V (j)∥2

F , (11)

where V (i) is fixed for all i ̸= j.

ALS optimization monotincally decreases continuously differentiable cost
functionals.

12/18 Tensor Train Kernel Learning

Intermediate Recap: Tensor Train Kernel Learning

We train a GP with composite kernel

k(x, x′|θ) := k̂(fV (x), fV (x′)|θ),
where

k̂ : Z × Z → R
is a base kernel with hyper-parameters θ, e.g. RBF, and

fV : Rd −→ Z
is a TT function with H1-orthonormal basis functions and coefficient tensor V .

The totality of hyperparameters is absorded into θ.

13/18 Tensor Train Kernel Learning

Numerical Experiments - Overview

Following models1 compared on three synthetic and six real-world (UCI) data sets:

TTKL

TT model

Sparse GP

Fully-connected deep neural network (DNN)

DKL with DNN as feature extractor

Canonical-Polyadic model from [KLM21] (CPKL)

We use random search [BB12] together with advanced early-stopping [LJR+20] for
hyper-parameter optimisation. Additionally, we repeat model evaluation six times
with randomly selected seeds and report the resulting mean and standard deviation.

1All models were implemented with the PyTorch [PGM+19] and GPyTorch [GPB+18] frameworks. Distributed model
selection and evaluation were facilitated by means of Ray [MNW+18] and Tune [LLN+18].

14/18 Tensor Train Kernel Learning

Numerical Experiments - TTKL Set-up

H1-orthonormal polynomials Pαi
for fixed degree αi = 1, . . . , J

TT rank uniformly constrained to r

Base kernel k̂ = kRBF

ALS solved using LU factorisation

Sparse variational inference (VI) [LDJD21] with mean-field Gaussian

Individual learning rates for TT components, RBF kernel and VI
hyper-parameters

ADAM [KB15] with default hyper-parameters, except for the initial learning rates

15/18 Tensor Train Kernel Learning

Numerical Experiments - Results

16/18 Tensor Train Kernel Learning

Numerical Experiments - Results

17/18 Tensor Train Kernel Learning

References
[BB12] James Bergstra and Yoshua Bengio, Random search for hyper-parameter optimization, Journal of Machine Learning Research (2012), no. 13, 281–305.

[Fri91] Jerome H. Friedman, Multivariate adaptive regression splines, The Annals of Statistics 19 (1991), no. 1, 1–67.

[GPB+18] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson, GPyTorch: Blackbox matrix-matrix Gaussian process
inference with GPU acceleration, Advances in Neural Information Processing Systems, 2018.

[HRS11] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider, The alternating linear scheme for tensor optimization in the Tensor Train format, SIAM
Journal on Scientific Computing (2011).

[KB15] Diederik P. Kingma and Jimmy Ba, Adam: A method for stochastic optimization, 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Yoshua Bengio and Yann LeCun, eds.), 2015.

[KLM21] Kriton Konstantinidis, Shengxi Li, and Danilo P. Mandic, Kernel learning with tensor networks, ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 2920–2924.

[LDJD21] Felix Leibfried, Vincent Dutordoir, ST John, and Nicolas Durrande, A tutorial on sparse Gaussian processes and variational inference, 2021.

[LJR+20] Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar, A system for
massively parallel hyperparameter tuning, Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020 (Inderjit S.
Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze, eds.), mlsys.org, 2020.

[LLN+18] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion Stoica, Tune: A research platform for distributed model selection
and training, 2018.

[MNW+18] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica, Ray: A distributed framework for emerging AI applications, 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18) (Carlsbad, CA), USENIX Association, October 2018, pp. 561–577.

[Ose11] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing 33 (2011), no. 5, 2295–2317.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala, Pytorch: An imperative style, high-performance deep learning library, Advances in Neural Information Processing Systems 32
(H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, eds.), Curran Associates, Inc., 2019, pp. 8024–8035.

[WHSX16] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing, Deep kernel learning, Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016 (Arthur Gretton and Christian C. Robert, eds.), JMLR Workshop and
Conference Proceedings, vol. 51, JMLR.org, 2016, pp. 370–378.

18/18 Tensor Train Kernel Learning

Numerical Experiments - Ablations

1/9 Tensor Train Kernel Learning

Numerical Experiments - Data Sets

Grid:

Ω = [0, 1]2

Φ(x) =
∑2

i=1 sin(2πixi) + ϵ with ϵ ∼ N (0, 0.1)
65 536 total data points (equidistant grid with 256 vertices)

Friedman [Fri91]:

Ω = [0, 1]5

ρ =
⊗5

i=1 U(0, 1)
Φ(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

100 000 data points

2/9 Tensor Train Kernel Learning

HighDimSine:

Ω = [0, 1]30

ρ =
⊗30

i=1 U(0, 1)
Φ(x) =

∑30
i=1 sin(πxi)

100 000 data points

UCI Machine Learning Repository:

Physicochemical Properties of Protein Tertiary Structure

KEGG Metabolic Relation Network (Directed)

Kin40k

SkillCraft1 Master

Housing

3/9 Tensor Train Kernel Learning

Hyper-Parameters
TTKL:

Tensor-Train ranks: r ∼ U(2, 15),

H1 polynomial degree: J ∼ U(2, 14),

ALS regularisation coefficient: δ1 = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1))
orthogonalisation of TT after pre-training with equal probability

latents dimensionality: L ∼ U(1, d)
number of inducing points: M ∼ U(10, 1000)
TT regularisation during end-to-end training with equal probability

TT regularisation coefficient during end-to-end training: δ2 = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1))
initial TT learning rate: η1 = 10b, b ∼ U(log(1 × 10−5), log(1 × 10−1))
initial RBF hyper-parameters learning rate: η2 = 10b,
b ∼ U(log(1 × 10−4), log(1 × 10−1))
initial VI related hyper-parameters learning rate: η3 = 10b,
b ∼ U(log(1 × 10−3), log(1 × 10−1))
data batch size: S ∼ U(4, 1024)

4/9 Tensor Train Kernel Learning

Hyper-Parameters
CPKL:

Canonical-Polyadic rank: r ∼ U(2, 15),

polynomial degree: J ∼ U(2, 20),

latents dimensionality: L ∼ U(1, d)
number of inducing points: M ∼ U(10, 1000)
CP regularisation during end-to-end training with equal probability

CP regularisation coefficient during end-to-end training: δ2 = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1))
initial CP learning rate: η1 = 10b, b ∼ U(log(1 × 10−5), log(1 × 10−1))
initial RBF hyper-parameters learning rate: η2 = 10b,
b ∼ U(log(1 × 10−4), log(1 × 10−1))
initial VI related hyper-parameters learning rate: η3 = 10b,
b ∼ U(log(1 × 10−3), log(1 × 10−1))
data batch size: S ∼ U(4, 1024)

5/9 Tensor Train Kernel Learning

Hyper-Parameters

DNN:

output dimension of first and second hidden layer: h1,2 ∼ U(1000, 10 000)
output dimension of third hidden layer: h3 ∼ U(100, 1000)
output dimension of fourth hidden layer: h4 ∼ U(10, 100)
hidden layer’s non-linearity is with equal probability either ReLU, Tanh or
quadratic

data batch size: S ∼ U(4, 1024)
initial learning rate: γ = 10a, a ∼ U(log(1 × 10−5), log(1 × 10−1))
regularisation is either applied or not with equal probability

regularisation coefficient: δ = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1))

6/9 Tensor Train Kernel Learning

Hyper-Parameters

TT:

Tensor-Train rank: r ∼ U(2, 15),
H1 polynomial degree: J ∼ U(2, 14),
regularisation coefficient: δ = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1)).

7/9 Tensor Train Kernel Learning

Hyper-Parameters

GP:

Number inducing points: M ∼ U(100, 1000)
initial learning rate: γ = 10b, b ∼ U(log(1 × 10−3), log(1 × 10−1))
Batch size: S ∼ U(4, 1024).

8/9 Tensor Train Kernel Learning

Hyper-Parameters

DKL:

latents dimensionality: L ∼ U(1, d)
number of inducing points for sparse VI: M ∼ U(10, 1000)
initial learning rate GP: γ1 = 10a, a ∼ U(log(1 × 10−3), log(1 × 10−1))
initial RBF hyper-parameters learning rate: γ2 = 10a,
a ∼ U(log(1 × 10−4), log(1 × 10−1))
initial DNN learning rate: γ3 = 10a, a ∼ U(log(1 × 10−5), log(1 × 10−1))
data batch size: S ∼ U(4, 1024)

9/9 Tensor Train Kernel Learning

	Appendix

