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Gaussian Process Regression

Goal: learn approximation f of a function

Φ: Ω −→ R, Ω = [a, b]d ⊂ Rd,

based on N realizations of random variables

X = [x(1), . . . , x(N)] with x(i) ∈ Ω, x(i) ∼ ρ,

y = [y(1), . . . , y(N)] with y(i) = Φ(x(i))
for i = 1, . . . , N .

A Gaussian Process (GP) prior

f0(x) ∼ GP(m0(x), k0(x, x′))
over f is characterised by

a mean function m0 : Rd → R
a spd covariance function k0 : Rd × Rd → R
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Gaussian Process Regression

For a finite number of inputs, the function values of the GP prior have a joint
Gaussian distribution

f0(X) = [f0(x(1)), . . . , f0(x(N))] ∼ N (m0(X), k0(X, X)),
with

mean vector m0(X) = [m0(x(1)), . . . , m0(x(N))]
and covariance matrix (k0(X, X))ij = k0(x(i), x(j)) for i, j = 1, . . . , N

To predict at new points X∗ = (x(1)
∗ , . . . , x

(M)
∗ ) we condition the GP on the data,

yielding the posterior

f∗(X∗) ∼ N (m∗(X∗), k∗(X∗, X∗))
with

m∗(X∗) = m0(X∗) − k0(X∗, X)k0(X, X)−1(m0(X) − y)),
k∗(X∗, X∗) = k0(X∗, X∗) − k0(X∗, X)k0(X, X)−1k0(X, X∗).

From now on we assume m0 ≡ 0.
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Gaussian Process Regression

The covariance function k0 usually depends on some set of hyper-parameters θ, i.e.

k0(x, x′) = k0(x, x′|θ).
For the RBF kernel

kRBF(x, x′) = σ2
f exp

(
− 1

2ℓ
∥x − x′∥2

)
we have

the prior standard deviation σf , i.e. signal variance

the lengthscale ℓ, determining correlation decay rate with increasing distance
between inputs

With the noise variance σn, the set of hyper-parameters is given by
θ = {σf , ℓ, σn}.
GP training: maximise marginal (log-)likelihood of targets over θ:

log p(y|X, θ) ∝ −y⊺K−1
θ y − log |Kθ|

with Kθ = k0(X, X).
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Feature Extraction for GPs

Let

fW : Rd → Z
denote a feature extractor with parameters W mapping to a latent space Z .

Now, assume the composite kernel

k(x, x′|θ) := k̂(fW (x), fW (x′)|θ),
where

k̂ : Z × Z → R
is a base kernel with hyper-parameters θ, e.g. RBF or linear kernel, and

θ := {W, θ}
are the joint hyper-parameters.
Possible feature extractors:

Deep neural networks, W are the weights ↪→ DKL [WHSX16]

Tensorized function spaces, W is the coefficient tensor ↪→ TTKL
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Tensor Kernel Learning

Consider the case Z = R.
Start with a set of basis functions

Pαi
: R → R, αi = 1, . . . , Ji, Ji ∈ N, i = 1, . . . , d

and set for all x = (x1, . . . , xd) ∈ Ω

fW (x) =
J1∑

α1=1
· · ·

Jd∑
αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi) (1)

with coefficient tensor

W ∈ RJ1×...×Jd.

6/18 Tensor Train Kernel Learning



Tensor Kernel Learning

Consider the case Z = R.
Start with a set of basis functions

Pαi
: R → R, αi = 1, . . . , Ji, Ji ∈ N, i = 1, . . . , d

and set for all x = (x1, . . . , xd) ∈ Ω

fW (x) =
J1∑

α1=1
· · ·

Jd∑
αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi) (1)

with coefficient tensor
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Remarks:

Potentially high expressive power (think of Pαi
as polynomials up to degree

d − 1)

For Ji ≡ J , W has storage complexity of Jd ↪→ curse of dimensionality
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Alleviating the curse of dimensionality: Tensor Trains

Figure: A full tensor W of order 5

Figure: A Tensor Train (TT) decomposition of W with TT ranks (r1, r2, r3, r4)
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Alleviating the curse of dimensionality: Tensor Trains

Recall

fW (x) =
J1∑

α1=1
· · ·

Jd∑
αd=1

Wα1,...,αd

d∏
i=1

Pαi
(xi) (2)

A low-rank TT compression of the coefficient tensor W reads

Wα1,...,αd
≈

r0∑
k0=1

. . .
rd∑

kd=1

d∏
i=1

V
(i)

ki−1,αi,ki
(3)

with

V (i) ∈ Rri−1×Ji×ri, i = 1, . . . , d,

r0 = rd = 1
TT ranks r1, . . . , rd−1 determining accuracy of the compression.

For every W , there exist TT-ranks such that equality holds in (3) [Ose11].

In our work: Optimise W only on a manifold of fixed TT rank.
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Alleviating the curse of dimensionality: Tensor Trains

With Ji ≡ J , the coefficient tensor W of a fully tensorized function

fW (x) =
∑

α1,...,αd

Wα1,...,αd

∏
i

Pαi
(xi) (4)

has storage complexity O(Jd).

On the other hand, the coefficient Tensor Train V of

fV (x) =
∑

α1,...,αd

∑
k0,...,kd

∏
i

V
(i)

ki−1,αi,ki
Pαi

(xi) (5)

has storage complexity O(Jdr2), where r = maxi=1,...,d−1{ri}.

The set of Tensor Trains with fixed TT-rank r = (r1 . . . , rd) is usually denoted Mr.
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Pre-training with the Alternating Linear Scheme

The loss functional of the risk minimisation

L(f ) :=
∫

Ω
(Φ(x) − f (x))2 ρ(dx) (6)

is approximated by the empirical risk minimisation for a set of iid realisations

x(n) ∼ ρ, yn = Φ(x(n)),
for n = 1, . . . , N , i.e.

L(f ) ≈ 1
N

N∑
n=1

(
y(n) − f (x(n))

)2
. (7)

To reduce over-fitting, we introduce regularisation, minimising

L̂(f ) =
N∑

n=1

(
y(n) − f (x(n))

)2
+ δ∥f∥2

F , (8)

for δ > 0 and F := H1
mix(Ω) =

⊗d
i=1 H1([a, b]).
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Pretraining with the Alternating Linear Scheme

The minimisation problem reads

min
fV

L̂(fV ) =
N∑

n=1

(
y(n) − fV (x(n))

)2
+ δ∥fV ∥2

F . (9)

for fV parametrised by a Tensor Train V ∈ Mr.

Choosing the basis functions Pαi
as H1([a, b])-orthonormal polynomials, the tensor

structure and Parseval’s identity yield

∥fV ∥2
F = ∥V ∥2

F ,

where ∥.∥F denotes the Frobenius-norm in full tensor space.

Hence, we arrive at the finite dimensional minimisation problem

min
V ∈Mr

L̂(fV ) = min
V ∈Mr

1
N

N∑
n=1

(
y(n) − fV (x(n))

)2
+ δ∥V ∥2

F , (10)
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Pretraining with the Alternating Linear scheme (ALS)

Idea of ALS [HRS11]: Sweep back and forth over the tensor network, sequentially
performing

min
V (j)

1
N

N∑
n=1

(
Φ(x(n)) − fV (x(n))

)2
+ δ∥V (j)∥2

F , (11)

where V (i) is fixed for all i ̸= j.

ALS optimization monotincally decreases continuously differentiable cost
functionals.
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Intermediate Recap: Tensor Train Kernel Learning

We train a GP with composite kernel

k(x, x′|θ) := k̂(fV (x), fV (x′)|θ),
where

k̂ : Z × Z → R
is a base kernel with hyper-parameters θ, e.g. RBF, and

fV : Rd −→ Z
is a TT function with H1-orthonormal basis functions and coefficient tensor V .

The totality of hyperparameters is absorded into θ.

13/18 Tensor Train Kernel Learning



Numerical Experiments - Overview

Following models1 compared on three synthetic and six real-world (UCI) data sets:

TTKL

TT model

Sparse GP

Fully-connected deep neural network (DNN)

DKL with DNN as feature extractor

Canonical-Polyadic model from [KLM21] (CPKL)

We use random search [BB12] together with advanced early-stopping [LJR+20] for
hyper-parameter optimisation. Additionally, we repeat model evaluation six times
with randomly selected seeds and report the resulting mean and standard deviation.

1All models were implemented with the PyTorch [PGM+19] and GPyTorch [GPB+18] frameworks. Distributed model
selection and evaluation were facilitated by means of Ray [MNW+18] and Tune [LLN+18].
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Numerical Experiments - TTKL Set-up

H1-orthonormal polynomials Pαi
for fixed degree αi = 1, . . . , J

TT rank uniformly constrained to r

Base kernel k̂ = kRBF

ALS solved using LU factorisation

Sparse variational inference (VI) [LDJD21] with mean-field Gaussian

Individual learning rates for TT components, RBF kernel and VI
hyper-parameters

ADAM [KB15] with default hyper-parameters, except for the initial learning rates
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Numerical Experiments - Results
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Numerical Experiments - Results
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Numerical Experiments - Ablations
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Numerical Experiments - Data Sets

Grid:

Ω = [0, 1]2

Φ(x) =
∑2

i=1 sin(2πixi) + ϵ with ϵ ∼ N (0, 0.1)
65 536 total data points (equidistant grid with 256 vertices)

Friedman [Fri91]:

Ω = [0, 1]5

ρ =
⊗5

i=1 U(0, 1)
Φ(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

100 000 data points
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HighDimSine:

Ω = [0, 1]30

ρ =
⊗30

i=1 U(0, 1)
Φ(x) =

∑30
i=1 sin(πxi)

100 000 data points

UCI Machine Learning Repository:

Physicochemical Properties of Protein Tertiary Structure

KEGG Metabolic Relation Network (Directed)

Kin40k

SkillCraft1 Master

Housing
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Hyper-Parameters
TTKL:

Tensor-Train ranks: r ∼ U(2, 15),

H1 polynomial degree: J ∼ U(2, 14),

ALS regularisation coefficient: δ1 = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1))
orthogonalisation of TT after pre-training with equal probability

latents dimensionality: L ∼ U(1, d)
number of inducing points: M ∼ U(10, 1000)
TT regularisation during end-to-end training with equal probability

TT regularisation coefficient during end-to-end training: δ2 = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1))
initial TT learning rate: η1 = 10b, b ∼ U(log(1 × 10−5), log(1 × 10−1))
initial RBF hyper-parameters learning rate: η2 = 10b,
b ∼ U(log(1 × 10−4), log(1 × 10−1))
initial VI related hyper-parameters learning rate: η3 = 10b,
b ∼ U(log(1 × 10−3), log(1 × 10−1))
data batch size: S ∼ U(4, 1024)
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Hyper-Parameters
CPKL:

Canonical-Polyadic rank: r ∼ U(2, 15),

polynomial degree: J ∼ U(2, 20),

latents dimensionality: L ∼ U(1, d)
number of inducing points: M ∼ U(10, 1000)
CP regularisation during end-to-end training with equal probability

CP regularisation coefficient during end-to-end training: δ2 = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1))
initial CP learning rate: η1 = 10b, b ∼ U(log(1 × 10−5), log(1 × 10−1))
initial RBF hyper-parameters learning rate: η2 = 10b,
b ∼ U(log(1 × 10−4), log(1 × 10−1))
initial VI related hyper-parameters learning rate: η3 = 10b,
b ∼ U(log(1 × 10−3), log(1 × 10−1))
data batch size: S ∼ U(4, 1024)
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Hyper-Parameters

DNN:

output dimension of first and second hidden layer: h1,2 ∼ U(1000, 10 000)
output dimension of third hidden layer: h3 ∼ U(100, 1000)
output dimension of fourth hidden layer: h4 ∼ U(10, 100)
hidden layer’s non-linearity is with equal probability either ReLU, Tanh or
quadratic

data batch size: S ∼ U(4, 1024)
initial learning rate: γ = 10a, a ∼ U(log(1 × 10−5), log(1 × 10−1))
regularisation is either applied or not with equal probability

regularisation coefficient: δ = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1))
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Hyper-Parameters

TT:

Tensor-Train rank: r ∼ U(2, 15),
H1 polynomial degree: J ∼ U(2, 14),
regularisation coefficient: δ = 10b, b ∼ U(log(1 × 10−10), log(1 × 10−1)).
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Hyper-Parameters

GP:

Number inducing points: M ∼ U(100, 1000)
initial learning rate: γ = 10b, b ∼ U(log(1 × 10−3), log(1 × 10−1))
Batch size: S ∼ U(4, 1024).
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Hyper-Parameters

DKL:

latents dimensionality: L ∼ U(1, d)
number of inducing points for sparse VI: M ∼ U(10, 1000)
initial learning rate GP: γ1 = 10a, a ∼ U(log(1 × 10−3), log(1 × 10−1))
initial RBF hyper-parameters learning rate: γ2 = 10a,
a ∼ U(log(1 × 10−4), log(1 × 10−1))
initial DNN learning rate: γ3 = 10a, a ∼ U(log(1 × 10−5), log(1 × 10−1))
data batch size: S ∼ U(4, 1024)
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