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Motivation
 The need to detect Concept Drift(CD) with respect to a significance level, 

Inductive Conformal Martingale can provide valid guarantees.

 We propose a betting function that avoids the continuous reduction 
of the Martingale value.

 A computationally efficient betting function  with only a few  
parameters to tune.
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Concept Drift
 Given a data stream 𝑆 = (𝑥0, 𝑦0 , (𝑥1, 𝑦1), … }

 𝑥𝑖 is an input vector , 𝑦𝑖 the corresponding label

 If the set S can be divided in two sets generated by  different 
distributions:                                                                                                           
𝑆0,𝑡 = (𝑥0, 𝑦0 , … , (𝑥𝑡 , 𝑦𝑡)} and 𝑆𝑡+1,… = {(𝑥𝑡+1, 𝑦𝑡+1), … }

Then a Concept Drift occurred at timestamp 𝑡 + 1.

Consequently, a violation of the exchangeability occurred.
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Data Exchangeability
 Exchangeability: 

 Given an infinite sequence of random variables (𝑍1, 𝑍2, 𝑍3, … ) the joint 
distribution 𝑃(𝑍1, 𝑍2, 𝑍3, … ) is exchangeable if it is invariant under any 
permutation of those random variables.

 Testing if the data is exchangeable is equivalent to testing the data for 
being i.i.d.

 Test Exchangeability Martingale

 Is a sequence of random variables 𝑆1, 𝑆2, 𝑆3, … greater or equal to zero.

 They keep the conditional expectation 𝔼(𝑆𝑛+1|𝑆1, 𝑆2, 𝑆3, … 𝑆𝑛) = 𝑆𝑛.
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How a Martingale works
 Consider a fair game where a gambler with infinite wealth follows a 

strategy that is based on the distribution of the events in the game. The 
gain acquired by the gambler can be described by the value of a 
Martingale.

 Specifically Ville's inequality (Ville, 1939) indicates that the probability 
to have high profit(𝐶) would be small, ℙ ∃𝑛, 𝑆𝑛≥ 𝐶 ≤ 1/𝐶
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Conformal Martingales
 Is an exchangeability Martingale which is calculated as a function of p-

values:

 𝑆𝑛 = ς𝑖=1
𝑛 𝑓𝑖(𝑝𝑖), where 𝑓𝑖(𝑝𝑖)= 𝑓𝑖(𝑝𝑖| 𝑝1, 𝑝2,…, 𝑝𝑖−1) is the betting 

function.

 𝑆𝑛= 𝑆𝑛−1𝑓𝑛(𝑝𝑛).

 The exchangeability assumption is rejected with a significance level 

equal to 
1

𝑀
if the value of the 𝑆𝑛 is equal to M (Ville's inequality (Ville, 

1939))
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Pvalue Calculation 
 To find the pvalue of the example 𝑧𝑗 we calculate the sequence 

𝐻𝑗 = {𝑎𝑘+1, , … , 𝑎𝑗}

 Then 𝑝𝑗 =
𝑎𝑖 ∈ 𝐻𝑗 𝑎𝑖 > 𝑎𝑗 +𝑈𝑗| 𝑎𝑖 ∈ 𝐻𝑗 𝑎𝑖 = 𝑎𝑗 |

𝑗−𝑘

Where 𝑈𝑗 is a random number from the uniform distribution (0,1).
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Calculating Non-conformity scores
 Given a sequence of examples {𝑧1, 𝑧2, … }

where 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖) with 𝑥𝑖 an input vector and 𝑦𝑖 the corresponding 
label.

 The first 𝑘 examples {𝑧1, 𝑧2, … , 𝑧𝑘} will be used to train the underlying 
algorithm. 

 The examples {𝑧𝑘+1,…, 𝑧𝑛} arrive one by one and a numerical value is 
assigned to each example called nonconformity score denoted by 𝑎𝑗
and equal to 𝐴{𝑧𝑖 , {𝑧1, 𝑧2, … , 𝑧𝑘}} with 𝑖 ∈ {1, … , 𝑗}. 

 The NCS is based on the underlying algorithm and when a new 
example arrives a new NCS is assigned to each example.
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Nonconformity Measure
 Underlying Algorithm

 Tree Classifier, Random Forest

 NCM

 For each example 𝑧𝑗 classifier will output the posterior probability ෦𝑝𝑗

For each label 𝑦𝑗, therefore we define the NCM: 𝒂𝒋 = −෦𝒑𝒋
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Existing Betting Functions
 Histogram Estimator

 We take a fix number of bins 𝑘, this will partition the [0,1] into 

𝐵1 = [0,
1

𝑘
), 𝐵2 = [

1

𝑘
,
2

𝑘
),…, 𝐵𝑘 = [

𝑘−1

𝑘
, 1)

 When a pvalue 𝑝𝑛 ∈ 𝐵𝑗 then the density estimator will be equal to  

෡𝑓𝑛 𝑝𝑛 =
𝑛𝑗.𝑘

𝑛−1
, where 𝑛𝑗 is the number of p-values belonging to 𝐵𝑗

 Kernel estimator


෡𝑓𝑛 𝑥 =

1

𝑛ℎ
σ𝑖=𝑖
𝑛 𝐾(

𝑥−𝑥𝑖

ℎ
)

Where h is the bandwidth and K(z)=
1

2𝜋
𝑒−

𝑧2

2
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Proposed Betting Function
 Theorem: When the distribution of the p-values is uniform, for any 

betting function other than f= 1 then 𝑆∞ = 0.

 Our betting function is built on top of any betting function 𝑓𝑛.

 Consider two players. Player one uses 𝑓𝑛 and player two uses the cautious 
betting function.

 Cautious Betting Function: ℎ𝑛= ൞
1 𝑖𝑓

𝑆1𝑛−1

𝑚𝑖𝑛𝑆1𝑛−𝑘
≤ 𝜀

𝑓𝑛 𝑖𝑓
𝑆1𝑛−1

𝑚𝑖𝑛𝑆1𝑛−𝑘
> 𝜀

 𝑊𝑖𝑡ℎ 𝑆1𝑛−𝑘 = ς𝑖=1
𝑛 𝑓𝑖(𝑝𝑖) , 𝜀 > 0 𝑘 ∈ {𝑛 − 𝑤,… , 𝑛 − 1} and w is an 

integer
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CD detection with ICM

Now if the final value of the Martingale 𝑆𝑛−𝑘 exceeds 10 or 100 then we can reject the exchangeability 
assumption at a significance level equal to 10% and 1% respectively, thus an alarm is raised for CD 
detection.
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Experiments and results - Datasets

 1 simulation for the STAGGER case

 30 simulations for the SEA,ELEC dataset

Dataset Number 
of 
Instances

Number of 
Variables

Number 
of labels

Number of 
concepts

Chunk 
size

Training 
set size

RECOVERY 
TIME 
DATASET

100100 1 numeric             
(ranging from 0 
to 1) 

2 2 10000
90000

100

STAGGER 1000000 3 categorical              
(3 values)

2 4 10000 200

SEA 1000000 3 numeric             
(ranging from 0 
to 10) 

2 4 250000 1000

ELEC 45312 8 numeric 2 unknown unknown 300

AIRLINES 539383 7 numeric 2 unknown unknown 200
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Experiments and results – Experimental 
Setting

 For algorithm 1 δ={0.01}

 To calculate the histogram estimator we have used the last 1000 
observations.

 To calculate the kernel estimator we have used the p-values of the last 500 
observations for the recovery dataset and for the rest  datasets the p-
values of the last 100 observations.

 For the Cautious betting function we have used a 𝑊 = 5000 and 𝜀 = 100
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Experiments and results – Performance 
Measures

 Accuracy: Average accuracy of the classifier (excluding the training 
set).

 Mean delay: Average number of observations before detecting a CD 
after it has occurred.

 True alarm rate(TAR): Average rate of CDs that have been correctly 
detected per chunk.

 False alarm rate(FAR): Average rate of CDs erroneously detected per 
chunk.

 Number of CDs detected: Total number of CDs detected in a real-
world dataset.
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Experiments and results – Recovery Time 
dataset log Martingale growth
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Experiments and results – Recovery Time 
dataset
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Experiments and results - STAGGER
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Experiments and results - SEA
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Experiments and results - Elec
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Experiments and results - AIRLINES
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Experiments and results – Comparison 
with two state of the art algorithms
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Conclusions
 We propose a new BF called Cautious.

 It addresses the problem that Martingale get values close to zero.

 It improves existing betting functions especially when the change occurs 
after a big-time interval.

 Experiments show that it can detect cases which the other two betting 
functions failed.

 The proposed approach has similar accuracy to the two state of the art 
algorithms
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Future Directions
 Combine the Cautious betting function with more than one uniformity 

test.

 Employ strategies for selecting representative training set
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Thank you!!!
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