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Can we rely on the output of our machine learning
algorithms?

▶ Traditionally, we first generate a model and then estimate its
error rate to decide on whether we are willing to rely on the
model or not

▶ When using conformal prediction, we instead generate a
model that we by design can rely upon; we specify a
probability of error that we are willing to tolerate and the
framework will guarantee that it is not exceeded
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Conformal prediction

Conformal prediction turns point predictions into set predictions

- a conformal classifier outputs sets of class labels

instead of e.g. ŷ = edible, a prediction may be
Ŷ = {edible}, Ŷ = {edible,poisonous} or even Ŷ = ∅

- a conformal regressor outputs prediction intervals

instead of e.g. ŷ = 23.5, a prediction may be
Ŷ = [21.0, 25.0]

Given a confidence level 1− ϵ, the framework guarantees (with no
stronger assumptions than the standard IID) that the probability of
making an error, i.e., the correct target value is not included in the
set prediction, is not larger than ϵ.
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Standard conformal regressors

A standard (inductive/split) conformal regressor is constructed as
follows:

1. randomly divide the training data into two disjoint subsets;
the proper training set and the calibration set

2. train the underlying model h using the proper training set

3. calculate scores α1, . . . , αq for the calibration set, where

αi = |yi − h (x i )|

4. let α(1), . . . , α(q) be the scores sorted in descending order

5. for each test object x , output the prediction interval:

Ŷ ϵ = h (x)± α(p)

where p = ⌊ϵ(q + 1)⌋ and 1− ϵ is the confidence level
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Standard conformal regressors (example)

i yi h (x i ) αi α(i)

1 25 24 1 4
2 23 24 1 3
3 27 24 3 3
4 18 22 4 2
5 12 14 2 2
6 33 34 1 1
7 19 17 2 1
8 11 14 3 1
9 14 14 0 0

Ŷ 0.1 = h (x)± α(1) = h (x)± 4

Ŷ 0.2 = h (x)± α(2) = h (x)± 3
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Normalized conformal regressors

A normalized (inductive/split) conformal regressor modifies the
standard conformal regressor by calculating calibration scores
through:

αi =
|yi − h (x i )|

σi

where σi is a difficulty (quality) estimate of x i

The prediction interval at the confidence level 1− ϵ for a test
instance x with difficulty σ then becomes:

Ŷ ϵ = h (x)± α(p)σ
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Normalized conformal regressors (example)

i yi h (x i ) σi αi α(i)

1 25 24 1 1 1.33
2 23 24 2 0.5 1
3 27 24 3 1 1
4 18 22 3 1.33 1
5 12 14 2 1 1
6 33 34 1 1 1
7 19 17 2 1 1
8 11 14 3 1 0.5
9 14 14 1 0 0

Ŷ 0.1 = h (x)± α(1)σ = h (x)± 1.33σ

Ŷ 0.2 = h (x)± α(2)σ = h (x)± σ
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Notes on conformal regressors

▶ As the probability of error is guaranteed by construction,
conformal regressors are often evaluated w.r.t. efficiency,
i.e., the size of the prediction intervals

▶ The efficiency is affected by the performance of the underlying
model; normalized conformal regressors are also affected by
how well the difficulty estimate correlates with the actual error

▶ Some approaches to estimating the difficulty rely on training a
separate model to predict the size of the error, e.g., using
kNN or ANN; others exploit properties of the underlying
model, e.g., using disagreement (variance) of the trees in a
random forest
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An experiment with synthetic data

A calibration set and a test set of 10 000 instances each, generated
in the following way:

yi ∼ N (0, 1)

ni ∼ N (0, 1)

ui ∼ U(0, 1)

h(xi ) = yi + ni · ui
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Synthetic data
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Difficulty estimates

▶ Difficulty estimate:

σi =

{
|ni |+ β, if 1(∼ U(0, 1) > p)

| ∼ N (0, 1)|+ β, otherwise

▶ Three levels of randomness will be considered:
p = 0, p = 0.5 and p = 1.0

▶ We will set β = 0.01
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Interval sizes
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Observations on normalized conformal regressors

1 A less informative difficulty estimate leads to a higher variance
of the interval sizes; with less information about the difficulty,
the interval sizes should instead be more uniform

2 The prediction intervals can become unreasonably large;
more than twice the largest observed absolute error
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Mondrian conformal regressors

A Mondrian conformal regressor modifies a standard conformal
regressor by dividing the calibration set into disjoint subsets
according to a Mondrian taxonomy with k categories, and where a
standard conformal regressor is produced for each subset.

A prediction interval for a test instance is obtained by assigning it
to one of the k categories and using the standard conformal
regressor of that category.

One option is to form the categories by binning of the difficulty
estimates.
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Interval sizes
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Conformal predictive systems

Conformal predictive systems for regression output conformal
predictive distributions (cumulative distribution functions)
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Conformal predictive systems

Conformal predictive systems come with a validity guarantee; the
output of the conformal predictive distributions (the p-values) for
the correct target values are distributed uniformly on [0, 1].

This allows us to control the error level when making predictions
on whether the correct target values are larger (or lower) than a
certain threshold value, e.g., we may rule out with 99% confidence
that the temperature will be above a critical level.

18 / 36



Conformal predictive distributions

We can also extract threshold values from the conformal predictive
distributions for the p-values that we are interested in.

For example, we can obtain prediction intervals with a coverage
guarantee, similar to conformal regressors.
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Split conformal predictive systems

A split conformal predictive system can be constructed as follows:

1. randomly divide the training data into two disjoint subsets;
the proper training set and the calibration set

2. train the underlying model h using the proper training set

3. calculate scores α1, . . . , αq for the calibration set, where

αi =
yi − h (x i )

σi

4. let α(1), . . . , α(q) be the scores sorted in ascending order
5. for each test object x with difficulty σ:

let C(i) = h (x) + α(i)σ for i ∈ {1, ..., q}
let C(0) = −∞ and C(q+1) = ∞
output the conformal predictive distribution:

Q(y) =

{ n+τ
q+1 if y ∈

(
C(n),C(n+1)

)
for n ∈ {0, ..., q}

n′−1+(n′′−n′+2)τ
q+1 if y = C(n) for n ∈ {1, ..., q}
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Split conformal predictive systems (example)

i yi h (x i ) σi αi α(i)

1 25 24 1 1 -1.33
2 23 24 2 -0.5 -1
3 27 24 3 1 -1
4 18 22 3 -1.33 -1
5 12 14 2 -1 -0.5
6 33 34 1 -1 0
7 19 17 2 1 1
8 11 14 3 -1 1
9 14 14 1 0 1

C(1) = h (x) + α(1)σ, . . . ,C(9) = h (x) + α(9)σ
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Split conformal predictive systems (example,
cont.)

For h (x) = 20 and σ = 1:

C(0), . . . ,C(10) = −∞, 18.67, 19, 19, 19, 19.5, 20, 21, 21, 21,∞

Q(15) = 0+τ
9+1 since 15 ∈

(
C(0),C(1)

)
Q(18.8) = 1+τ

9+1 since 18.8 ∈
(
C(1),C(2)

)
Q(19) = 2−1+(4−2+2)τ

9+1 = 1+4τ
9+1 since 19 = C(2)

Q(22) = 9+τ
9+1 since 22 ∈

(
C(9),C(10)

)
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Conformal predictive distributions

h(x) = 20 σ = 1 h(x) = 25 σ = 1

h(x) = 20 σ = 2 h(x) = 25 σ = 2
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Calibration with conformal predictive distributions
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Heteroscedastic residuals
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Mondrian conformal predictive systems

A Mondrian conformal predictive system modifies a regular
conformal predictive system by dividing the calibration set into
disjoint subsets according to a Mondrian taxonomy with k
categories, and where a conformal predictive system is produced
for each subset.

A conformal predictive distribution for a test instance is obtained
by assigning it to one of the k categories and using the conformal
predictive system of that category.

One option is to form the categories by binning of the predictions.
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Random forests on the bank8fm dataset
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Evaluating conformal predictive systems

▶ The validity can be investigated by testing whether the
p-values for a test set are distributed uniformly on [0, 1], e.g.,
using the Kolmogorov-Smirnov test

▶ The coverage of extracted prediction intervals can also be
investigated

▶ When using the conformal predictive distributions for
calibration, the predictive performance, e.g., as measured by
mean-squared error, can be compared to the original
underlying model

▶ Continuous ranked probability score (CRPS) is another option,
which uses the full conformal predictive distributions
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Continuous ranked probability score (CRPS)

CRPS(Q, yi ) =

∫ ∞

−∞
(Q(y)− 1(y ≥ yi ))

2dy
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Concluding remarks

▶ Conformal prediction allows for controlling the probability of
error by turning point predictions into set predictions

▶ Standard conformal regressors produce equisized intervals,
while normalized conformal regressors may produce more
informative and tighter intervals

▶ Normalized conformal regressors may however produce
intervals that seem to be informative without actually being
so and the sizes may be unreasonably large; a remedy for this
is provided by Mondrian conformal regressors
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Concluding remarks (cont.)

▶ Conformal predictive systems is a recent development that
provides predictions in the form of conformal predictive
distributions, which are more informative than prediction
intervals; the latter can be derived from the former

▶ Mondrian conformal predictive systems allow for affecting the
shape of the output conformal predictive distributions, beyond
changing the location and scale; this can significantly improve
performance, e.g., as measured by CRPS
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Areas not covered in this tutorial

▶ Online (transductive) approaches

▶ Alternative ways of defining nonconformity scores

▶ Using out-of-bag predictions instead of a calibration set

▶ Combining multiple conformal regressors/predictive systems,
e.g., multiple splits, jackknife+, cross-conformal prediction,
synergy conformal prediction

▶ Theoretical foundations and guarantees

▶ Decision making using conformal regressors and predictive
systems

▶ Adapting to scenarios in which the IID assumption is violated;
see e.g. invited talk by Prof. Barber

▶ Practical applications, see e.g. invited talk by Dr. Carlsson
and Dr. Ahlberg
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Future work

▶ New ways of defining nonconformity scores, difficulty
estimates and Mondrian categories

▶ New approaches to extracting intervals and point predictions
from conformal predictive distributions

▶ New performance metrics/evaluation procedures that reflect
actual use of the prediction intervals/predictive distributions
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