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1. Extended Abstract

Coresets have been proven useful in accelerating the computation of inductive conformal
predictors (ICP) when the training data becomes large in size. This work shows that coreset-
based conformal predictors are not only computationally efficient in the centralised setting,
but may also naturally be used in scenarios where the dataset of interest is inherently
distributed over at least two machines.

This work follows the line of research started in Riquelme-Granada et al. (2019) and
Riquelme-Granada et al. (2020b), where ICP is accelerated by using the idea of data com-
pression. That is, instead of manipulating the classic conformal algorithm (Vovk et al.
(2005)) to gain some computational acceleration, the idea is to use the ICP method as
is, on a small dataset that acts as a proxy to the original dataset of interest. This proxy
dataset is called a coreset (or core-set) (Feldman et al. (2013)), and it provably correctly
approximates the original much-larger dataset, in a well-defined sense, with respect to a
machine learning problem.

The combination of the coreset technique with that of ICP is known as Coreset-based
Inductive Conformal Prediction (C-ICP), and it was shown that it may save a large amount
of computing time while retaining the validity and efficiency of ICP (see experiments results
in Riquelme-Granada et al. (2019)).

2. Learning over Distributed Data

This piece of research exploits an attractive aspect of coresets that was left unexplored in
the previous works: its aggregation properties. Specifically, the coreset paradigm defines
the addition property (Braverman et al. (2016)), which states that two coresets can be safely
merged together, provided that they represent two non-overlapping sets of data. Formally,
let C1 be a ∆-coreset for P1 and C2 be a ∆-coreset for P2, with P1 ∩ P2 := ∅. Then, by the
addition property, we have that C1 ∪ C2 is a ∆-coreset for P1 ∪ P2.

By the above addition property, it becomes natural to extend C-ICP to applications
where the data are inherently distributed and one wants to apply conformal prediction
without creating high communication overhead. Table 1 shows information regarding the
validity and efficiency of C-ICP compared to ICP for the problem of Logistic Regression
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Table 1: Validity (errors count) and efficiency (singleton count) measures for Covertype and
Webspam dataset for ICP and C-ICP when data are stored in 4 machines. The
overhead is the number of d-dimensional vectors sent over the network in order to
learn the data. The coreset size for C-ICP is 1% of the proper training set.

# Nodes: 4 ϵ = 0.3

Measure Dataset ICP C-ICP (1%)

Errors (validity) Covertype 34,886(0.3002) 34,929 (0.3005)

Webspam 21,025 (0.3004) 20,991 (0.2999)

Singleton (efficiency) Covertype 104,274 (0.8973) 104,365 (0.8981)

Webspam 0 (0) 1 (0)

Overhead Covertype 581,012 vectors 5,815 vectors (1% of data)

Webspam 350,000 vectors 3,504 vectors (1% of data)

(Riquelme-Granada et al. (2020a)) using the well-known Covertype (581,012 data points)
and Webspam (350,000 data points) datasets. Furthermore, the table shows the overhead
generated by both methods when the data is distributed over 4 machines and they need to
send it to a centralised aggregator to perform conformal prediction. C-ICP only requires
to move 1% of the dataset over the network, while standalone ICP needs 100% of the data
to be shuffled from the nodes to the centralised server. Also, as already established in
Riquelme-Granada et al. (2019), C-ICP approximates closely the calibration and efficiency
of ICP.

In summary, C-ICP does not only provide ICP with large acceleration in the centralised
scenario, but also allows ICP to be communication-efficient when the data are partitioned
across machines and the practitioner needs a quick method for applying conformal predic-
tion.
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