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Abstract

Drug design is a critical step in the drug discovery process, where promising drug
molecules are engineered to be later evaluated preclinically and perhaps clinically. Pheno-
typic drug design has again gained traction. Cancer cell lines, a frequently adopted in vitro
model for phenotype drug design, can be used to evaluate the drug resistance level (lack of
inhibitory activity, for example) of a large number of molecules, and discard those that are
the least likely to become drug candidates. By reusing these datasets, supervised learn-
ing models have been built to predict drug resistance on cancer cell lines. Usually, these
methods have assigned reliability to the whole model rather than reliability to individual
predictions (molecules). In problems such as drug design, accurately achieving the latter
would revolutionize decision making. Conformal prediction is a model-agnostic method to
assign reliability to each model prediction. In this study, we investigated the impact of
conformal prediction on the prediction of inhibitory activity of molecules on a given cancer
cell line. This analysis was carried out in each of the 60 cell lines from the NCI-60 panel
to understand the variability of the results across cancer types. We also discussed the im-
plications of predicting the molecules considered most potent. In addition, we investigated
how the further subdivision of the training set to build conformal prediction models may
affect the results obtained. Overall, we observed that those molecules deemed most reliable
by conformal prediction are substantially better predicted than those that are not. This
suggest that such computational tools are promising to guide phenotypic drug design.
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1. Introduction

Drug discovery is a process that typically requires the identification of a small molecule
with the potential to become a drug candidate (Hughes et al., 2011). The two main drug
discovery strategies are phenotypic and target-based (Childers et al., 2020). In target-based
drug discovery (TDD), the starting point is a defined molecular target that is hypothesized
to have an important role in the considered disease. In contrast, phenotypic drug discovery
(PDD) does not rely on knowledge about a specific drug target or a hypothesis about its role
in the disease (Moffat et al., 2017). PDD evaluates observable phenotypic changes in a cell
that can then be used to identify small molecules (Szabo et al., 2017). Preclinical models
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such as cancer cell lines are most commonly used to study the efficacy of drugs, and has
been a frequently-adopted approach for PDD screens. Cell lines are tested against drugs
to assess the sensitivity/resistance determined by half-maximal inhibitory concentration
(IC50) value (Piyawajanusorn et al., 2021). Drug sensitivity profiling utilizing cancer cell
lines is routinely performed and thus large-scale datasets are publicly available. Despite
TDD being the predominant approach for the past 30 years, the majority of first-in-class
drugs identified from 1999 to 2008 had originated from PDD approaches. Over the past few
years, PDD has thus gained traction (Childers et al., 2020).

In parallel, computer-aided drug design has grown steadily since the late 1960s (Merz Jr
et al., 2010). Many supervised learning algorithms are now employed for predictive modeling
of phenotypic activities of molecules in cancer cell lines (Ballester et al., 2022). However,
these predictive models usually assign a reliability to the whole model (e.g. by calculating
the RMSE between predicted and observed activities of test set molecules), rather than a
reliability at the instance level (e.g. a predicted activity interval where the observed activity
of a given test set molecule is most likely to be). In problems such as drug design, estimating
this reliability is important for decision making. For instance, to select the molecules that
are not only predicted to be most potent but also those with the most reliable predictions, so
as to reduce time and financial costs. Conformal Prediction, CP for short, is a mathematical
framework to model the reliability of predictions in diverse tasks. The idea behind CP is
that a new instance is predicted with a label that makes it similar to the old instances in
some specific way. The degree to which the specific type of similarity holds within the old
instances is used to estimate the confidence in the prediction (Vovk et al., 2005). CP have
successfully applied to a range of drug design problems (Norinder et al., 2014; Eklund et al.,
2015; Cortés-Ciriano et al., 2016; Bosc et al., 2019; Alvarsson et al., 2021).

In this study, we investigated if CP can enhance the prediction of the inhibitory activity
of molecules on a given cancer cell line. We tested our hypothesis on 60 cell lines from the
NCI-60 panel by building one model per cell line. Class-imbalance data have been rarely
explored in the context of regression problems, where the minority class instances are the
most valuable data instances. In this study, we investigate whether CP generates robust
predictions in molecules with submicromolar potency (these molecules constitute a minority
class in the NCI-60 data). We also look at how different training data partitions impact
CP performance at this task.

2. Experimental design

2.1. Dataset

We modelled the pGI50 of molecule-cell line pairs, defined as the negative logarithm of the
half-maximal inhibitory concentration of the molecule on the cell line. We used data with
such measures of activities for 50,555 compounds on 60 cancer cell lines from the National
Cancer Institute (NCI-60) data. These 60 cell lines comprises 9 cancer types: leukemia,
melanoma, non-small-cell lung, colon, central nervous system, ovarian, renal, prostate, and
breast. Each molecule submitted to the NCI-60 for testing and evaluation is identified with
a unique registration number called the National Service Center (NSC) ID.

The preprocessing of the NCI-60 dataset had two main stages: data cleaning and data
representation. In the data cleaning stage, we remove low-activity molecules (pGI50 <
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4) as they do not have therapeutic potential. Some NSC–cell line pairs were tested at
different concentrations, resulting in multiple pGI50 measurements. Thus, we calculated
the mean when more than one pGI50 measurements were available for the same NSC-cell
line pair. In the data representation stage, chemical structures were curated from the
Chem2D Jun2016.sdf file using the openbabel library. The salts were removed from the
chemical structure and SMILES were standardized using the Molvs package. Using the
SMILES of a molecule, we generated its Morgan circular fingerprint (Rogers and Hahn,
2010) with radius 2 and 256 bits. This fingerprint size works well on similar phenotypic
drug design problems (Sidorov et al., 2019). Therefore, each molecule is represented by
a 256-bit Morgan fingerprint that corresponds to the presence or absence of a particular
substructure in the molecule. These will be the features employed to build each of the 60
models, one per cell line.

Figure 1: Each cell line has abundant data, although potent molecules are rather
scarce. Distribution of pGI50 measurements in the 50,846 unique NSC IDs (bot-
tom). Distribution of the number of unique molecules tested per cell line (top).
The most potent molecules (pGI50 ≥ 6) for each cell line are in orange color.

These preprocessing steps led to 50,846 unique NSC IDs and 2,707,434 pGI50 measure-
ments that correspond to 50,555 unique molecules. Figure 1 shows NCI-60 data after the
preprocessing stage. Here, the pGI50 values are represented by a right (or positive) skewed
distribution with a long tail form by the most potent molecules (pGI50 ≥ 6 or molecules
with submicromolar potency). The peak at pGI50=4 is originated because if the inhibitory
activity is not reached or is exceeded, the pGI50 value is expressed as greater or less than
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the maximum or minimum concentration tested (NCI-60 screening methodology). This
study includes molecules with pGI50=4 as preliminary results showed better performance
in model evaluation when these molecules were present in the data set.

2.2. Models

We employed the Python implementations of the random forest or RF (Pedregosa et al.,
2011) and the extreme gradient boosting (XGB) algorithms to build a regression model for
each cell line. RF is a combination of tree predictors such that each tree depends on the
values of a random vector sampled independently and with the same distribution for all
trees in the forest (Breiman, 2001). The term “Gradient Boosting” in XGB originates from
the paper (Friedman, 2001). XGB is an implementation of gradient boosted decision trees
designed for speed and performance (Sheridan et al., 2016).

Hyperparameter tuning is a way to enhance the performance of machine learning (ML)
algorithms. Previous studies have found sets of hyperparameters that work well in similar
problems, using RF or XGB. For example, Svetnik et al. (2003) found that in RF, the
number of trees in the forest (n estimator) and the number of features to consider when
looking for the best split (max features) are the most important hyperparameters to tune.
For XGB, Sheridan et al. (2016) found that the most important hyperparameters to tune
are the number of gradient boosted trees (n estimator), the maximum tree depth for base
learners (max depth), and the subsample ratio of columns when constructing each tree
(cosample bytree). To tune these hyperparameters, a grid search was carried out on each
of the 60 training sets to find their best values for predicting the inhibitory activity of
molecules on that cancer cell line. To do this, we used an 80/10/10 scheme. This means
that 80% of the data was used as a training set, 10% as a validation set, and 10% as a
test set. After identifying the best values for these hyperparameters, the algorithm used
them to re-train the model on 90% of the data. Therefore, the test set was not used in any
way to train or select the corresponding underlying model (the same is true for the error
model, and thus, CP models). The hyperparameter values used for the 60 cell lines were
selected based on the value at which most cell lines achieved their best performance. The
best hyperparameter values for RF were n estimator=1000 and max features=0.4; and
for XGB were n estimator=1000, max depth=9 and cosample bytree=0.4.

2.3. Conformal prediction

For each of these ML regression problems, we consider the example space defined as Z ≡
X × Y . The elements in Z are usually expressed as zi = (xi, yi), where xi is a vector
of features and yi is the real valued variable to predict (Vovk et al., 2005). Note that in
this basic scenario, the prediction of yi, h(xi) = ŷi, is usually given without a degree of
confidence. To enhance this, CP provides reliability for a single instance by predicting an
interval for yi instead of a point prediction. The standard ML model h(x) is called the
underlying model in CP.

The inductive CP (ICP) framework – a subtype of CP – requires a user-specified con-
fidence level, which refers to the minimum fraction of predictions whose true value will lie
within the predicted confidence interval. A calibration function, which is used to assess
to which extent a new instance conforms to the data that the model has been built upon.
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In particular, a calibration function can be defined as a non-conformity function, in which
case, this function measures how different a new example is from the examples on which the
model was built. If a conformal predictor is well calibrated, the error rate ε ∈ [0, 1] should
not be larger than ε = 1− confidence level (Balasubramanian et al., 2014).

In the standard ICP for regression problems, the interval size is given by the non-
conformity score αs obtained at the specified confidence level. Here, s is the index of the
(1 − ε)th percentile nonconformity score. If the cardinality of the calibration set is q, then
s = b(1 − ε)qc. For example, if the list of 10 sorted α−values is 0.1, 1.2, . . ., 8.5, 8.8,
9.3, the non-conformity score at a confidence level of 90%, i.e ε = 0.1, is the value at
the index s = 9, that is, α9 = 8.8. Therefore, intervals of the same size are obtained for
each prediction, which is a suboptimal approximation. The normalized ICP is a variant
that includes the error model to control the size of the predicted intervals (Norinder et al.,
2014). Mathematically, we get a second example space Ze ≡ X × E, where E is the set of
errors. Thus, a second supervised learning model, g(x), is trained on the same features, but
to predict the error made by the h(x) model rather than the actual yi. The error model g(x)
is trained on the same training set as h(x) but to predict the error in the calibration set and
in the test set. The information of the error model is then included in the non-conformity
function, which is evaluated for the zi instance giving rise to its non-conformity score,

αzi =
|yi − h(xi)|
g(xi) + δ

(1)

and in the predicted interval (Γεi) for the zi instance:

Γεi = h(xi)± αs(g(xi) + δ) (2)

where δ is a user-supplied sensitivity parameter to control the ratio of the observed error
to the predicted error.

To measure the quality of the predicted intervals, CP introduces the validity and ef-
ficiency metrics for model evaluation. Validity measures how reliable the predictions are,
and efficiency quantifies how specific these are. For example, validity implies that for a
confidence level of 90% (0.9), the predictor will include the true yi value within its predic-
tion intervals Γ0.1

i in at least 90% of all predictions if CP is well calibrated. Efficiency is
how small the predicted interval is. Usually, requesting a higher confidence level results in
reduced efficiency, i.e. larger predicted intervals (Vovk et al., 2005; Balasubramanian et al.,
2014).

2.4. Model building and evaluation

We built one model per cell line using the molecular features of the molecules as features
and the measured pGI50s on the cell line as the real-valued variable to predict. A 90-10
random partition was applied to each of the 60 cell lines, where 10% of the molecules tested
on that cell line are kept aside as the test set. The remaining 90% are used as the training
set and the training set was further randomly subdivided into the proper training set and
the calibration set, as required for ICP. The purpose of the calibration set is to estimate
the confidence, through the non-conformity function, in the new predictions based on the
previous predictions. To explore the impact of different training data partitions on each
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regression problem (i.e. cell line), we employed three training set partitions: 70-30, 80-20,
and 90-10.

The normalized ICP for regression, implemented in the NonConformist python package,
was used to run all the experiments. NonConformist sets the k-nearest neighbors (kNN)
algorithm as the default error model, so we evaluated this option in addition to the RF and
XGB algorithms. In this package, the error target is defined as:

error = log(|yi − h(xi)|+ 0.00001) (3)

where a small value (0.00001) was added to the |yi − h(xi)| term to avoid the singularity
yi = h(xi). We kept the default sensitivity parameter value (δ = 0), so the predicted interval
in Equation (2) is now more directly computed as Γεi = h(xi)±αsg(xi). For the underlying
model, we employed either the RF algorithm or the XGB algorithm. Table 1 shows the
combinations of the considered CP models, each of them evaluated at four confidence levels:
80%, 85%, 90%, and 95%. A total of 1080 models (60 cell lines × 6 CP models × 3 training
data partitions) were built and evaluated in this study.

Table 1: CP models trained. Each CP model is specified by its h(x)-g(x) combination

Underlying Error model g(x)
model h(x) kNN RF XGB

RF RF-kNN RF-RF RF-XGB
XGB XGB-kNN XGB-RF XGB-XGB

The performance of the regression models was evaluated for the 60 test sets. Each CP
model in Table 1 was evaluated using the validity and efficiency. The underlying model
h(x) and the error model g(x) are standard supervised learning models (Subsection 2.3),
for which we compute the root mean square error (RMSE) and the Pearson correlation
coefficient (Rp). A lower RMSE (error close to 0) and a higher Rp (correlation close to 1)
are hence better values.

3. Results and Discussion

3.1. Underlying models

For each cell line, we employed the corresponding trained RF and XGB models to predict
the pGI50 value of a given test set molecule from its molecular features. Then, we computed
the RMSE and Rp metrics for each of the 60 sets (one per cell line). These metrics were
additionally computed for the most potent test molecules (those with measured pGI50 ≥ 6,
or submicromolar potency). Since the underlying model h(x) is a regression model, i.e.
without CP, confidence levels are not applicable at this stage.

Figure 2 shows RMSE and Rp distributions across the 60 test sets, for either RF or XGB
models. All models are well above the random Rp level of zero. The XGB model provides
slightly better performance (median RMSE=0.58 and median Rp=0.74) than the RF model
(median RMSE=0.62 and median Rp=0.71). This trend remains the same when we look
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(a) RMSE (b) Rp

Figure 2: The underlying models can predict the pGI50 of test set molecules,
although this is worse for potent molecules. The boxplots summarize the
(a) RMSE and (b) Rp distributions across 60 test sets (one per cell line). RMSE
and Rp values were computed between the observed and predicted pGI50 values
using either RF or XGB models. Color code refers to all molecules (pGI50 all) or
most potent molecules (pGI50 ≥ 6) in the test sets.

at the subset of test sets containing only the most potent molecules (XGB with median
RMSE=1.35 and median Rp=0.5; RF with median RMSE=1.5 and median Rp=0.48).
These results may be influenced by the few examples of most potent molecules (pGI50 ≥ 6)
present in each cell line of the NCI-60 panel (Figure 1), which may make these types of
molecules more difficult to predict.

We are now looking for the best/worst predicted cell line in terms of RMSE, i.e. the cell
line with the lowest/largest error between the observed and predicted pGI50 value. Table 2
shows the best and worst predicted cell line (from top to bottom) for each underlying model.
For the RF model, the best predicted cell line is OVCAR-5, an ovarian carcinoma cell line.
For the XGB model, the best predicted cell line is SNB-19, a central nervous system cancer
cell line. The worst predicted cell line, in both models, is the SR, a leukemia cancer cell
line. We will discuss these results in Subsection 3.2.

3.2. Conformal prediction

We computed the validity and efficiency for the six CP models shown in Table 1. The
validity is computed as the average error rate. This is the fraction of molecules whose
observed pGI50 values lie outside the predicted interval. The efficiency is computed as the
average prediction interval size of the test set molecules.
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3.2.1. Training data partitions

In supervised learning, the size of the training and test set is likely to have an impact on
the output predictions (Singh et al., 2021; Rácz et al., 2021). We investigated whether this
holds true in the training set when ICP is used in the context of this problem. That is, we
investigated if the further subdivision of the training set, into the proper training set and
calibration set, has an impact in terms of validity and efficiency in the predictions made
using ICP.

Given the three training data partitions, similar validity and efficiency results were
obtained for all CP models described in Table 1. Consequently, as an example, we explain
the training data partition results only for the RF-RF model (Figure 3).

(a) Validity (b) Efficiency

Figure 3: Different training data partitions have indistinguishable validity and
efficiency. The boxplots summarize the validity and efficiency distributions, at
each confidence level, across 60 test sets (one per cell line) using the RF-RF CP
model. Color code refers to the proper training and calibration data partitions
evaluated.

The median validity, Figure 3(a), is similar in all three training data partitions, a trend
that is repeated at each confidence level. The median efficiency, Figure 3(b), independent
of the used training data partition, is also similar at each confidence level. Furthermore,
the validity and efficiency values, exemplified for the RF-RF model, show that this model
remains consistent with respect to these values independent of the data size used for calibra-
tion of the predictions. These results suggest that, at least for these datasets, varying proper
training and calibration data partitions do not affect the obtained results. Consequently,
the rest of the study employs 90-10 training data partitions without loss of generality. The
validity and efficiency results for all CP models will be further discussed in Subsection 3.2.2.

3.2.2. Validity and efficiency

The median validity and efficiency values were computed in the 60 test sets for each CP
model (Table 1) at four confidence levels. Figure 4 shows that, at each confidence level,
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the median validity is close to the required error in all CP models (ε ± 0.002). Moreover,
on average 4 out of 6 CP models are valid (well calibrated), i.e. the error rate ε does not
exceeded at each confidence level.

However, achieving valid and near-valid models has a cost in terms of worsened efficiency
as shown in Figure 4. Here, the efficiency decreases (i.e. the average size of the predicted
intervals increases) as we increase the confidence level, which is a usual behaviour in CP.
The median efficiency (interval size) in CP models such as RF-kNN (blue markers) or XGB-
kNN (red markers) increases rapidly as we increase the confidence level, reaching values that
are not informative for pGI50 prediction. For example, a median efficiency around 9 pGI50

units is obtained by the RF-kNN CP model at a confidence level of 95%. This behavior will
be explained later in this subsection. For the remaining CP models, a better efficiency is
obtained when RF is used as the underlying model (median efficiency ranges from 1.43 to
2.74 pGI50 units in RF-RF and RF-XGB CP models) rather than the XGB model (median
efficiency ranges from 1.64 to 5.92 pGI50 units in XGB-RF and XGB-XGB CP models).

Figure 4: CP models have substantially different efficiency within a given confi-
dence level. Median efficiency vs median validity across 60 test sets (one per cell
line), at four confidence levels. Color code refers to the six CP models (h(x)-g(x))
employed. Markers refers to the requested confidence level.

As already observed when we analyzed the efficiency, the confidence level influences the
pGI50 interval size, becoming more pronounced in the RF-kNN and XBG-kNN CP models.
Here, pGI50 interval size is given by the multiplication of the non-conformity score and the
error predicted. The kNN error model obtains the highest non-conformity scores across 60
test sets (data not shown), which suggests that these predictions are dissimilar compared
to the examples in the calibration set. Hence, the RF-kNN and XGB-kNN CP models are
less confident about the predictions made. This highlights the importance of choosing an
appropriate error model when using the normalized ICP, as well as a confidence level which
should be linked to the specific application.
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3.2.3. Prediction performance using CP

To quantify whether there is an improvement in prediction performance using CP, we are
focusing on the performance of those instances that are valid at a given confidence level.
Thus, we call a prediction CP-valid if the observed pGI50 value is within the predicted
interval. The predictions made by a regression model, without using CP, are called non-CP
predictions (non-CP = CP-valid ∪ CP-invalid). To make a holistic comparison between
CP-valid predictions and non-CP predictions, we analyzed the RMSE and Rp obtained in
the underlying models and in the error models.

(a) RMSE (b) Rp

Figure 5: Relaxing the requested confidence level leads to more accurate CP-
valid predictions. The boxplots summarize the (a) RMSE and (b) Rp distri-
butions across the 60 test sets (one per cell line). RMSE and Rp values were
computed between the observed and predicted pGI50 value using either RF or
XGB as the underlying models. Color code refers to either CP-valid test set
molecules, at each confidence level, or non-CP test set molecules.

In addition to the improvement we obtain in predictions when CP is used, results from
Figure 5(a) suggest that the CP-invalid predictions concentrate a large part of the error
obtained. Moreover, at each confidence level, using the RF-based h(x) model leads to a
better RMSE distribution across the 60 test sets (one per cell line). Indeed, the median
RMSE in the XGB-based h(x) model is approximately 0.02 pGI50 units higher than that of
the RF model at each confidence level. A similar behavior occurs in terms of Rp, Figure 5(b),
where we have a better correlation between the observed and predicted pGI50 value when
RF is used. Here, the median Rp in the XGB model is approximately 0.04 pGI50 units
lower at each confidence level. Note that the median RMSE for the RF model ranges from
0.39 to 0.5, while the median for the non-CP case is 0.62. For the XGB, the median RMSE
ranges from 0.41 to 0.52, while the median for the non-CP case is 0.58.

Figure 6 suggests that in molecules where pGI50 error is well predicted, CP-valid pre-
dictions are more likely. Overall, we can observe an improvement in terms of RMSE and
Rp values, since the best values are obtained with the CP-valid predictions. Moreover,

10



Conformal prediction of small-molecule drug resistance

the RF- and XGB-based g(x) models obtain similar results and show better RMSE and
Rp performance, at each confidence level, compared to the kNN-based g(x) model. This
suggests that the RF and XGB error models better capture the relationship between the
predicted and observed pGI50 error.

(a) RMSE - h(x):RF (b) RMSE - h(x):XGB

(c) Rp - h(x):RF (d) Rp - h(x):XGB

Figure 6: Molecules that are CP-valid have a better prediction of the pGI50 error.
The boxplots summarize the RMSE (top) and Rp (bottom) in predicting pGI50

errors across the 60 test sets (one per cell line). RMSE and Rp values were
computed between the observed and predicted pGI50 error, using either kNN-,
RF- or XGB-based g(x) models. Color code refers to either CP-valid test set
molecules, at each confidence level, or the non-CP test set molecules.

To analyze the trade-off between the confidence level and the number of CP-valid
molecules, we calculated the median RMSE and Rp over the 60 test sets. Figure 7 shows
a monotonic improvement of the predictions as the requested confidence level is decreased.
While higher confidence levels are related to larger predicted intervals, the choice of the con-
fidence level should be guided by the specific task to be predicted. Here, pGI50 predictions
at a lower confidence level are more reliable, i.e., the predicted interval is smaller. Note
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that the standard prediction based on using the underlying model only, or non-CP, can be
regarded as CP with a requested 100% confidence level, which requires an arbitrarily large
predicted interval and hence corresponds to a prediction without uncertainty assigned.

(a) RMSE - pGI50 all (b) Rp - pGI50 all

(c) RMSE - pGI50 ≥ 6 (d) Rp - pGI50 ≥ 6

Figure 7: Trade-off between requested confidence level and number of test
molecules at that level. Median RMSE (left) and Rp (right) values in the
60 test sets (one per cell line). Color code refers to either the RF- or XGB-based
h(x) model. Markers refers to the type of validation. RF is the error model used
in the case of CP-valid predictions. X-axis shows the number of test set molecules
without restriction in their pGI50 value (pGI50 all), and the most potent molecules
(pGI50 ≥ 6).

The number of test molecules that are CP-valid predicted and obtained by the RF-RF
CP model is slightly lower than in the XGB-RF CP model (Figure 7). This behavior is
more evident when dealing with the most potent molecules (Figures 7(c) and 7(d)). This
could impact the performance of the models, as the most potent molecules tend to be more

12



Conformal prediction of small-molecule drug resistance

difficult to predict (Figure 2), therefore a larger number of them may impact the RMSE
and Rp values obtained. Moreover, the results obtained by the RF-RF CP model are better
than those obtained by the XGB-RF CP model.

3.2.4. Best and worst cell line model

In Subsection 3.1 we showed the best/worst predicted cell line in terms of RMSE. Now
we looked at which cell lines come out when we apply CP and select them in terms of
their best/worst efficiency. Based on previous results, we chose the error model RF, and a
confidence level of 80% when CP was used.

Table 2 shows that the RF model keeps the trend of best and worst predicted cell lines
with and without CP validation, suggesting that in addition to a small error, the prediction
uncertainty (interval size) is small. For the XGB model, the worst predicted cell line is the
same with and without CP. However, the best predicted cell line without CP is the SNB-19
cell line, while the best predicted cell line with CP is the NCI-H322M, a non-small cell
lung cancer cell line. This suggests that even if we obtain a small error, the uncertainty
of the prediction may be large, highlighting the importance of assigning uncertainty to the
predictions made.

Table 2: Best and worst predicted cell line for each underlying model, for predictions that
are non-CP and CP-valid. The confidence level in the CP is 80%. The total column
represents the number of test set molecules used to calculate these performance
metrics.

Model Cell All test set CP-valid test set
h(x) line RMSE Rp Validity Efficiency Total RMSE Rp Total

RF
OVCAR-5 0.5360 0.6969 0.2102 1.0868 4800 0.3350 0.8443 3791
SR 0.7575 0.6910 0.1981 1.7550 4064 0.5027 0.8371 3259

XGB
SNB-19 0.5125 0.7646 0.1875 1.7448 4852 0.3626 0.8382 3942
NCI-H322M 0.5328 0.7164 0.2035 1.3503 4757 0.3400 0.8438 3789
SR 0.7231 0.7137 0.2084 2.1834 4064 0.5147 0.8189 3217

The trend of our results is summarized, as a particular example, in Table 2. That is, an
improvement in terms of lower RMSE and higher Rp was obtained using CP, with a cost
in the number of CP-valid molecules bounded by 1 - Validity. Indeed, Figure 8 shows that
the subset of molecules that are CP-valid predicted (blue dots) have lower errors and higher
correlations than those that are not CP-valid predicted (orange dots).

4. Conclusions

• The primary goal of this study was to investigate the improvement introduced by CP
when predicting the inhibitory activity of molecules on a given cancer cell line. We
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(a) Best with RF-RF: OVCAR-5 (b) Worst with RF-RF: SR

(c) Best with XGB-RF:NCI-H322M (d) Worst with XGB-RF: SR

Figure 8: The prediction of the pGI50 of molecule-cell line pairs improves when
CP is used. Observed and predicted pGI50 value in the best (left) and worst
(right) predicted cell line. Color code refers to test set molecules with (blue) and
without (orange) CP validation. The vertical and horizontal dotted lines show
the threshold for molecules with pGI50 ≥ 6. See Table 2 for performance metrics.
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conducted the same analysis on each of the 60 cell lines to understand how results
vary across cancer types.

• CP models were better at each selected confidence level, with a cost in terms of
worsened efficiency (higher uncertainty associated to the pGI50 prediction) at higher
confidence levels. This was expected as CP does not alter the predictions of the
underlying model in any way. Instead, it anticipates which of these are the most
reliable.

• CP models were also better when trying to predict the most potent molecules, which
constitutes a minority class within NCI-60 data.

• CP-valid predictions at lower confidence levels are more reliable. However, the choice
of the confidence level should be guided by the specific task to be predicted. Here,
higher confidence levels needs to be balanced against the uncertainty in the prediction
of the pGI50 value.

• The results from different training data splits showed that the chosen proper training
set and the calibration set split do not affect the efficiency and validity results in each
of the 60 test sets.

• CP-valid predictions in each of the 60 test sets have lower errors and higher correlations
than those that are non-CP (for each test set, these predictions come from the same
underlying model, thus ensuring a fair comparison). Therefore, the CP model should
improve hit rates in prospective virtual screening, by not only testing in vitro those
molecules likely to be potent (predicted pGI50 ≥ 6), but also requesting that are
CP-valid.

• We are not aware of any previous study that demonstrated that CP improves the
retrieval of molecules with high potency on NCI-60 cell lines (Figure 8). These results
strongly suggest that selecting compounds for in vitro validation will result in higher
hit rates when restricting to those predicted to be CP-valid at the chosen confidence
level, rather than the most common approach of merely using the underlying model
prediction (non-CP).

• In the future, we plan to investigate the application of CP to other scenarios such
as those where test set present a higher proportion of chemotypes not seen on the
training set.

Supplementary information
The code and data for the reproduction of the results shown are available at: https:

//doi.org/10.5281/zenodo.6504995
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