
Proceedings of Machine Learning Research 179:1–19, 2022 Conformal and Probabilistic Prediction and Applications

Robust Gas Demand Forecasting With Conformal Prediction

Mouhcine Mendil mouhcine.mendil@irt-saintexupery.com
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Abstract

Predicting the future trends of customer gas demand as precisely as possible is vital for
securing the supply chain from production to distribution. The operations at Air Liq-
uide require the predictions of a Machine Learning forecaster to be coupled with rigorous
Uncertainty Quantification (UQ), building trustworthy and informative prediction inter-
vals. To address these industrial needs, we propose to apply Conformal Prediction (CP), a
framework that can provide probabilistic guarantees for any underlying predictive model.

The problem is formulated as time series forecasting, which may counter the CP hy-
pothesis of data exchangeability. Nevertheless, our experiments show that CP methods
enhance the predictive coverage of the tested UQ approaches. We also test EnbPI, a con-
formal method designed specifically for time series, and propose a locally adaptive variant.
To carry out our experiments with prediction intervals using multiple regression models, we
introduce our new python library PUNCC and a novel dataset (around 10k observations)
provided by Air Liquide which leverages over 7 years of data of weekly gas consumption.

Keywords: Conformal Prediction, Gas Distribution, Prediction Intervals, Time Series,
Uncertainty Quantification.

1. Introduction

In Machine Learning (ML), we build predictive models from experience, by choosing the
right approach for the right problem, and from the accessible data, via algorithms. Despite
our best efforts, we can encounter some underlying uncertainty that could stem from various
sources or causes.

Typically, uncertainty in the ML process can be categorized into two types (Hüllermeier
and Waegeman, 2021): aleatoric uncertainty, also known as statistical uncertainty, which
is irreducible as due to the intrinsic randomness of the phenomenon being modeled; and
epistemic uncertainty, also known as systematic uncertainty, which is reducible through
additional information, e.g. via more data or better models.
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In all its forms, uncertainty can have major impacts in industry. It would be very helpful
to the on-site operators to quantify this uncertainty with a known guarantee, via Conformal
Prediction (CP) methods for instance. To give a more practical viewpoint, we tackle a use
case of industrial gas demand forecasting. An anonymized dataset was built by Air Liquide,
a world leader in gases, technologies and services for industry, to be representative of the
industrial process.

1.1. The Industrial Use Case

With several sources of production and multiple customers of industrial gases across France,
it is the company’s responsibility to guarantee the availability of supply, i.e. it should know
when to deliver the right product to all its customers on time.

By taking into account geographical and logistical factors, managing the customers’
products storage has an effect on the whole supply chain, from production to distribution.
Therefore, the dispatchers, who are in charge of delivering the products, estimate the future
trends of customers demands in advance based on their years of experience in the field.
They have to take into account daily logistical constraints, e.g., limited transport resources,
limited product availability, and accessibility issues.

In order to help the dispatchers in their estimations, multiple forecasting algorithms
have been proposed to predict the needs in production as precisely as possible in the short
term, and compare them with the dispatchers’ estimations. Nonetheless, despite achieving
remarkable performance, the comparison between the predictions and the estimations yields
an uncertainty that is currently not measured. Such uncertainty can have a critical impact
on production: if we produce more than intended, we face energy and product losses;
conversely, if we produce less, we risk drying out the customers and failing to deliver the
right amounts on time.

1.2. Challenges and Objectives

In light of this industrial context, even the best forecast model can suffer from uncertainty
between the forecast predictions and the dispatchers estimations. The focus is then shifted
toward quantifying the uncertainty associated with the forecast predictions. Since this
forecasting use case is a regression problem, one effective way would be by building Predic-
tion Intervals (PIs) via Uncertainty Quantification (UQ), which consists of upper and lower
bounds that contain the forecast predictions with high probability. Hence, the dispatch-
ers would have at their disposal minimum and maximum values that numerically quantify
operational uncertainties.

Nonetheless, operational constraints have been expressed regarding the desired results.
Obviously, these intervals should have a high coverage probability to be used in produc-
tion with great trust, while also being as “narrow” as possible to be informative for the
dispatchers. To approximate more effectively their predictions, dispatchers need a sort of
statistical safety net in their decision-making process, that will increase the robustness of
these operations, boost the trust in the forecast algorithm, and optimize the production
and distribution of the products.

This is why we focused our work on Conformal Prediction (CP) methods, which
constitute a promising solution to the operational constraints described before. These meth-
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ods produce prediction intervals backed by theoretical guarantees while being able to be
applied atop any regression algorithm. In its original form, CP (Papadopoulos et al., 2002;
Vovk et al., 2005; Papadopoulos et al., 2011; Lei et al., 2018) assumes exchangeable or
independent and identically distributed data. This assumption is usually not met in time
series, where the data can be subject to distribution shifts and variable dependency, which
can invalidate the guarantee of marginal coverage of CP.

Recent works (Tibshirani et al., 2019; Xu and Xie, 2021b; Barber et al., 2022) shed the
light on approaches of CP that go beyond exchangeability. In particular, Ensemble batch
Prediction Interval (EnbPI) (Xu and Xie, 2021b) is an ensemble-based wrapper around
regression models that offers asymptotically valid coverage and efficient Prediction Intervals
(PIs) for a class of time series. We propose in this paper to test EnbPI and other state-of-the-
art CP methods on the problem of forecasting gas demand. We also propose a modification
of EnbPI into a locally adaptive variant to enhance its conditional coverage.

The rest of the paper is structured as follows: PIs are presented in Section 2, along with
the metrics used to evaluate their performances. In Section 3, CP methods are showcased
for the benefit of the reader. Section 4 presents the industrial dataset, as well as our own
developed library, before delving into the experiments that were conducted in this work.
Finally, we compare and discuss the results obtained, before concluding in Section 5.

2. Uncertainty quantification with prediction intervals

Let (X,Y ) ∼ PXY , with X being the (random) vector of features and Y ∈ R the target in
a learning task. Let α ∈ (0, 1) be a miscoverage level, interpretable as the proportion of
predictive mistakes we are willing to accept in the long run. A PI (Hahn and Meeker, 1991)
obtained via algorithm Cα(X) should contain the true value of the random variable Y ,
(1−α)100% of the time. Ideally, P{Y ∈ Cα(X) |X = x} = (1−α) holds true conditionally
on the value taken by X. An inferential procedure that satisfies this statement is said to
produce conditionally valid intervals1. When the weaker condition P{Y ∈ Cα(X)} = (1−α)
holds, the procedure is marginally valid (see Section 3).

2.1. Construction of prediction intervals

Let Y ∈ R be a prediction target, such as the demand of product at any given time in our
industrial use case. There are two main approaches to build the interval Ĉα(X) = [ Ŷ L, Ŷ U ],
with lower bound Ŷ L and upper bound Ŷ U . First, one can add an error margin δα to a
point prediction: Ĉα(X) = [f̂(X) − δα(X) , f̂(X) + δα(X)]. Here, f̂(·) usually estimates
the conditional expected value E{Y |X = x}, and δα(X) ≥ 0 depends on the data and a
probabilistic statement made within the PI procedure; in linear regression, for instance, we
could assume the errors to be normally distributed (Wasserman, 2004). Second, one can
estimate the bounds directly, e.g. by quantile regression: Ĉα(X) = [q̂αlo

(X) , q̂1−αhi
(X)],

where q̂β(·) is an estimation (Koenker and Bassett Jr, 1978; Meinshausen, 2006) of the
conditional quantile qβ(x) = inf{y : F (y |X = x) ≥ β}, with αlo + αhi = α. If valid,
these intervals are representative of the predictive error due to the predictor (epistemic

1. This guarantee is on the procedure followed to sample the data and construct the PIs. The interval has
a probabilistic interpretation only before observing the data. For a detailed explanation, see (Shafer and
Vovk, 2008, Section 2.2) and (Hahn and Meeker, 1991, Section 2.3.6).
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uncertainty) and the randomness in sampling (aleatoric uncertainty). Independently of the
choice of f(·) or q(·), in Section 3 we show that conformal inference builds valid intervals
for any method and can “robustify” existing PIs with rigorous probability guarantees.

2.2. Metrics for prediction intervals

In the literature (Pang et al., 2018; Bazionis and Georgilakis, 2021), we find coverage
metrics to assess how often the predicted intervals Ĉα(X) contain the true value of Y ,
and sharpness metrics to measure the width of the intervals. Coverage and sharpness are
connected, as a degradation in one usually leads to an improvement of the other.

Let n be the number of samples in a test dataset Dtest = {(Xi, Yi)}ni=1, (Xi, Yi) ∼ PXY .
For a miscoverage level α ∈ (0, 1), we get the corresponding nominal (target) coverage
as 1 − α. We measure how many times the PI contains the true value via the empirical
coverage, or Prediction Interval Coverage Probability :

PICP =
1

n

n∑
i=1

1{Ŷ L
i ≤ Yi ≤ Ŷ U

i } ∈ [0, 1]. (1)

When PICP ≈ 1− α, the PIs are capturing, or “covering”, the values of Y at the specified
α. For a PICP > 1− α we have overcoverage and we are capturing too many points, for
PICP < 1− α, we have undercoverage.

In CP, the reference metric for sharpness is the Average Width, AW = 1
n

∑n
i=1(Ŷ

U
i −Ŷ L

i ).
The Prediction Interval Normalized Average Width allows for comparisons over different
datasets, via the normalization R = Ymax − Ymin:

PINAW =
1

nR

n∑
i=1

(Ŷ U
i − Ŷ L

i ). (2)

3. Conformal Prediction

Many popular ML algorithms do not offer UQ out of the box (Hastie et al., 2009; Goodfellow
et al., 2016), and some UQ methods are valid only under hypotheses on PXY or asymptotic
properties of the algorithm (e.g. Section 2.1): they require enough data to get reliable PIs
and can suffer from overfitting.

Conformal Prediction (CP) (Vovk et al., 2005) is a set of distribution-free, model-
agnostic and non-asymptotic methods to do UQ by constructing valid prediction sets or
intervals, whose probability coverage is backed by theoretical guarantees. Given a miscov-
erage probability α ∈ (0, 1), a set of exchangeable2 training data {(Xi, Yi)}ni=1 and test
point (Xnew, Ynew) with common distribution PXY , a CP procedure Cα(·) builds prediction
sets so that:

P
{
Ynew ∈ Cα (Xnew)

}
≥ 1− α. (3)

Over many calibration and test sets, Cα(X) will contain the observed values of Y with fre-
quency of at least 100(1−α)%. Within the CP framework, Equation 3 holds for any model,
any data distribution PXY and any finite sample sizes. Unlike the probability statement in

2. This includes independent and identically distributed data (iid) as a special case (Aldous, 1985).
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Section 2, this holds for Y when averaging over all possible X, that is, marginally and not
conditionally (Foygel Barber et al., 2020). We could overcover or undercover Y for some
values of X.

CP can act as a complementary tool to attain rigorous probability coverages, as it
can “conformalize” any existing predictor during or after training (black box predictors),
yielding marginally valid PIs even under model misspecification (Chernozhukov et al., 2021).
Furthermore, any theoretical property of the underlying predictor still holds3.

3.1. Related Work

In this section, we present the most common CP methods of the literature. The reader is
also referred to Angelopoulos and Bates (2021) for a hands-on introduction to CP and Shafer
and Vovk (2008); Zeni et al. (2020) for an in-depth overview. Let Dtrain = {(Xi, Yi)}ntrain

1=1 ∼
PXY be the training data and α ∈ (0, 1) the miscoverage probability.

3.1.1. The split conformal prediction procedure

Following the Split CP method (Papadopoulos et al., 2002; Lei et al., 2018), also known as
Inductive CP, here are the fundamental steps of conformalization:

(Step 1) Choose (or receive) a base prediction model: f(·)
(Step 2) Choose a nonconformity score: R = s(f̂(X), Y )

(Step 3) Choose a data scheme: split training data Dtrain into two partitions, a fit
subset Dfit and a calibration subset Dcalibration

(Step 4) Fit & calibrate: compute f̂(·) on Dfit and scores R̄ = {Ri}, i = 1, . . . ,
|Dcalibration| on Dcalibration

(Step 5) Get error margin δfα = (1− α)(1 + 1
|Dcalibration|)-th empirical quantile of R̄

(Step 6) Inference: build CP interval Ĉ(Xnew), for observation Xnew

The base prediction model f(·) (Step 1) is either a pre-fitted black-box f̂ , or is
selected through empirical experimentation or for operational needs. The selection of non-
conformity score (Step 2) is at the heart of CP: here, the default score is the absolute
deviation Ri = |Yi− f̂(Xi)| (Section 3.1.2 for other possible scores). The split data scheme
(Step 3) used to fit and conformalize a predictor works well with large datasets. We par-
tition Dtrain in two disjoint sets: Dfit, to fit the predictor, and Dcalibration for calibration.
For smaller datasets, better options exist (Section 3.1.2). For calibration (Step 4), the
data scheme determines the out-of-sample evaluation of f̂ : here, we compute the scores

R̄ = {Ri}|Dcalibration|
i=1 on Dcalibration. In (Step 5), we compute the error margin δfα as a

quantile of the sorted scores; δfα is a constant and does not depend on the test point Xnew.
At inference (Step 6), we get the PI as:

Ĉα(Xnew) =
[
f̂(Xnew)− δfα , f̂(Xnew) + δfα

]
. (4)

When conformalizing a pre-trained predictor f̂ , one only needs additional data Dcalibration

∼ PXY , skipping (Step 3) and the fit of (Step 4).

3. e.g., the asymptotic conditional coverage of Quantile Regression Forests (Meinshausen, 2006).
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3.1.2. Conformal regression methods

In the CP literature, different methods stem from the choice of nonconformity score and data
scheme. Split CP turns into Locally Adaptative Conformal Prediction (LACP) when using

scaled scores Ri = |Yi−f̂(Xi)|
σ̂(Xi)

, where σ̂(X) is a predictor of dispersion learned on Dtrain.

This was proposed by Papadopoulos et al. (2002) and further studied by Papadopoulos
et al. (2011); Papadopoulos and Haralambous (2011); Johansson et al. (2014); Boström
et al. (2017), for different types of predictors. Here, we follow Lei et al. (2018) and σ̂(Xi)

predicts the conditional Mean Absolute Deviation (MAD) of
(
Y − f̂(X)

)
, conditioned on

X = x. LACP is “local” in the sense that, for a point (Xi, Yi) ∼ PXY , the prediction
interval size will be corrected to represent the variability at Yi|Xi = xi. The PI is given by:

Ĉα(Xnew) =
[
f̂(Xnew)− σ̂(Xnew) δ

f,σ
α , f̂(Xnew) + σ̂(Xnew) δ

f,σ
α

]
. (5)

where the normalized error margin δf,σα is scaled up by σ̂(Xnew).

Split CP can be extended to quantile (and interval) base predictors q(·) via the noncon-
formity score Ri = max{q̂αlo

(Xi)− Yi, Yi − q̂1−αhi
(Xi)}, i = 1, . . . , |Dcalibration|. This gives

the Conformalized Quantile Regression (CQR) method (Romano et al., 2019), with PI:

Ĉα(Xnew) =
[
q̂αlo

(Xnew)− δqα , q̂1−αhi
(Xnew) + δqα

]
, (6)

where δqα is a correction margin that guarantees finite-sample coverage for the quantile
predictions. If δqα ≈ 0, we get a confirmation of its predictive marginal validity backed by
theory. Although designed for exchangeable data, in Section 4.4 we show its reasonable
effectiveness on time series.

For small datasets, the jackknife+ (Barber et al., 2021) uses either a Leave-One-Out
(LOO) orK–fold data schemes for better statistical efficiency, at the cost of fitting ntrain and
K models. When the base predictor is an ensemble learner using bagging (Breiman, 1996a),
one can compute the nonconformity scores via the Out-of-Bag (OOB) “trick” (Breiman,
1996b) with negligible computational overhead4. Notably, the Jackknife+–after–Bootstrap
(Kim et al., 2020) and the Quantile Out–of–Bag (Gupta et al., 2019) CP methods are,
respectively, compatible with any point f(·) and interval q(·) predictor. For the above
methods, the inference (Step 6) is modified to account for the multiple fitted predictors.

3.1.3. Conformal prediction for time series

As previously mentioned in the introduction, the community is moving towards extensions
of CP for non-exchangeable data (Barber et al., 2022; Tibshirani et al., 2019; Xu and Xie,
2021b). For time series in particular, the literature introduces additional assumptions on
the problem to get close to the properties of CP. The method in (Chernozhukov et al.,
2018) aims at recovering data exchangeability via permutations of sequences of data sam-
ples. Furthermore, Gibbs and Candès (2021) and Zaffran et al. (2022) worked on obtaining

4. When bagging, one fits B predictors on B bootstrap datasets Sb, sampled with replacement from Dtrain.
Following a probabilistic fact (see citations), on average, about ∼ 30% of the samples are left out of
Sb, or out-of-bag, and we can compute the scores with out-of-sample data, approximating a Leave-One-
Out (LOO) scheme.
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adaptive miscoverage probabilities α for online CP, while in (Stankevičiūtė et al., 2021) CP
is applied to multiple time series assumed to be exchangeable. Finally, Diquigiovanni et al.
(2021) worked with multivariate functional time series applied to demand prediction in the
Italian gas market, and in (Wisniewski et al., 2020) we find a modified, empirically tested,
version of split CP applied to financial data.

Among the most promising results is the Ensemble batch Prediction Interval (EnbPI)
algorithm (Xu and Xie, 2021b), a modification of the Jackknife+-after-Bootstrap that also
uses OOB estimation of nonconformity scores (see Footnote 4). By doing so, EnbPI avoids
overfitting without recourse to data-splitting, which improves the computational efficiency.
By construction, EnbPI yields constant-size intervals. We implemented a locally adaptive
extension referred to as Adaptive Ensemble batch Prediction Interval (aEnbPI), by integrat-
ing an ensemble estimation of the conditional MAD σ̂ to the original algorithm. This is a
straightforward application of LACP to EnbPI, yielding scaled nonconformity scores.

3.2. Adaptive Ensemble Batch Prediction Interval

The Ensemble batch Prediction Interval (EnbPI) algorithm (Xu and Xie, 2021b) is a modi-
fication of the Jackknife+-after-Bootstrap (Kim et al., 2020), using the Out-of-Bag (OOB)
trick of Breiman (1996b) to estimate Leave-One-out (LOO) nonconformity scores and ag-
gregated predictors. EnbPI allows to build marginally valid PIs for time series with few
assumptions in addition to the CP framework. From now on, we use the original notation
of the paper, which will be immediately clear to the reader.

The data is supposed to be generated by the model Yt = f(Xt) + ϵt, where the function
f is unknown and the errors ϵt are identically distributed but not necessarily independent.
The d-dimensional feature vector Xt can include the history {Yt−1, Yt−2, . . . } of Yt, such
that both traditional time series models (e.g., ARIMA) and complex ML techniques are
eligible.

We propose the Adaptive Ensemble batch Prediction Interval (aEnbPI) method as an
extension of the LACP to EnbPI. In Algorithm 1, the highlighted lines represent the
additions or modifications brought in aEnbPI with respect to EnbPI.

From Line 1 to Line 11, the procedure is derived from the Jackknife+-after-Bootstrap
of Kim et al. (2020): 1) the b-th bootstrap estimators (b = 1, . . . , B) of the conditional
mean f̂ b and the conditional MAD σ̂b are trained on bootstrap samples of the training data
2) the i-th LOO estimates (i = 1, . . . , T ) of the conditional mean f̂ϕ

−i and the conditional

MAD σ̂ϕ
−i are approximated by aggregation of a subset of bootstrap models for which the

sample (xi, yi) is OOB and 3) the OOB nonconformity scores ϵϕi are computed. Note that

we replace the absolute residuals |yi − f̂ϕ
−i(xi)| by the scaled residuals

|yi−f̂ϕ
−i(xi)|

σ̂ϕ
−i(xi)

.

Line 13 marks the start of the inference loop to determine the PIs on a time horizon T1

with respect to the batch size s. At the end of every batch of sequential predictions (see
Line 19), we update the nonconformity scores ϵ̂ by replacing the s oldest values with the s
most recent. The batch update allows for dynamic calibration of PIs: under potential data
drift, discarding old errors and considering the most recent ones can improve the accuracy
of PI widths even without refitting the models on the newly available data. Finally, on
the basis of the (1 − α)-th quantile of the nonconformity scores, the OOB estimation of
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Algorithm 1: Adaptive Ensemble batch Prediction Interval (aEnbPI). Additions or
modifications of EnbPI (Xu and Xie, 2021b) are highlighted.

Input: Training data {(xi, yi)}Ti=1, point prediction algorithm Af , variability
prediction algorithm Aσ, miscoverage level α, aggregation function ϕ, number
of bootstrap models B, batch size s, and test data {(xt, yt)}T+T1

t=T+1; yt is
revealed only after the batch of s PIs with t in the batch are constructed.

1 for b = 1, . . . , B do
2 Sample with replacement an index set Sb = (i1, . . . , iT ) from indices (1, . . . , T );

3 Compute f̂ b ← Af ({(xi, yi)|i ∈ Sb});
4 Compute σ̂b ← Aσ({(xi, yi)|i ∈ Sb});
5 end
6 ϵ̂← {};
7 for i = 1, . . . , T do

8 f̂ϕ
−i(xi)← ϕ({f̂ b(xi)|i /∈ Sb});

9 σ̂ϕ
−i(xi)← ϕ({σ̂b(xi)|i /∈ Sb});

10 ϵ̂ϕi ←
|yi−f̂ϕ

−i(xi)|
σ̂ϕ
−i(xi)

;

11 ϵ̂← ϵ̂ ∪ {ϵ̂ϕi };
12 end

13 Ĉ ← {};
14 for t = T + 1, . . . , T + T1 do

15 f̂ϕ
−t(xt)← (1− α) quantile of {f̂ϕ

−i(xt)}Ti=1;

16 σ̂ϕ
−t(xt)← ϕ{σ̂ϕ

−i(xt)}Ti=1;

17 wϕ
T,t ← (1− α) quantile of ϵ;

18 Cϕ,α
T,t (xt)← [f̂ϕ

−t(xt)± wϕ
t σ̂

ϕ
−t(xt)];

19 Ĉ ← Ĉ ∪ Cϕ,α
T,t (xt);

20 if t− T = 0 mod s then
21 for j = t− s, . . . , t− 1 do

22 ϵ̂ϕj ←
|yj−f̂ϕ

−j(xt)|
σ̂ϕ
−j(xt)

;

23 ϵ̂← (ϵ̂− {ϵ̂ϕ1}) ∪ {ϵ̂
ϕ
j } and reset index of ϵ̂;

24 end

25 end

26 end

27 return Ensemble prediction intervals Ĉ = {Cϕ,α
t (xt)}T+T1

t=T+1

the local dispersion σ̂ϕ
−t enables to construct rescaled prediction intervals Cϕ,α

T,t = [f̂ϕ
−t(xt)±

wϕ
t σ̂

ϕ
−t(xt)] that account for data heteroskedasticity.

A final word on Line 15, where the point estimate is given by the empirical quantile of
the T OOB predictions. In the latest, revised version of the paper currently under review
Xu and Xie (2021a), this inferential step is modified by taking an aggregation of the OOB
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predictions: f̂ϕ
−t(xt) = {f̂

ϕ
−i(xt)}Ti=1. More insights on this point are also given in Zaffran

et al. (2022).

The validity of aEnbPI derives from EnbPI. Roughly speaking (interested reader can find
the details in Xu and Xie (2021b, Section 4.1))5, the prediction errors must be reasonably
“well-behaved”, in the sense that there is a number of time steps after which current errors
are not affected by past errors (independence). Second, the predicted residuals must be
close to the true residuals. This hypothesis could be invalidated, for instance, if we were
overfitting the training data. As the authors point out, “[...] the series can exhibit arbitrary
dependence and be highly non-stationary, but still have strongly-mixing (or even i.i.d.)
errors”. For more details on the implications of this assumptions, see Xu and Xie (2021b,
Section 4.2).

4. Experiments

4.1. The customers demands forecasting dataset

The customers demands forecasting dataset was to be shared among the contributors of
the confiance.ai consortium while containing sensitive customers data. A necessary step of
data anonymization and numerical transformations was then inevitable to ensure customers
data confidentiality. Having that in mind, a brief description of the dataset will follow to
grasp this use case without compromising possible critical information.

The dataset includes data related to historical consumption of industrial gas across seven
years, customers and orders specifics, geographical distribution, and seasonality parameters.
In short, there are several sources of production, a handful of products concerned, and mul-
tiple customers to deliver to. Geographical data is retrieved for the sources of production to
locate the origin of the quantity that has been produced. The product type is also essential
to be involved in the dataset, since quantities can obviously differ among various products
needed. Customers-specific data will give more information into the clients involved and
how they are dispatched to the production sources according to the quantities and prod-
uct type needed. For each combination of source, product, and customer, we obtain a
unique time series of gas delivery.

After aggregating product quantities weekly, the objective is to predict accurate pre-
dictions for the following week. Having 29 combinations of source, product, and customer
overall, the dataset is a concatenation of all these time series over seven years, as illus-
trated in Figure 1. With approximately 350 weekly quantities per time series, the dataset is
composed of around 10 000 observations in total. The forecast algorithm’s sliding window
leverages the last four weeks of data to predict the quantities for the next one. Given that
some time series are dependent, it is operationally efficient to learn a single joint model
for predicting future demands of all combinations. Additional features related to the reg-
istered orders and holidays information were also added to provide a maximum amount of
knowledge. Further details are provided in Appendix A.

5. See Assumption 1 & 2 in Section 4.1 of the paper. See also the additional material: http://proceedings.
mlr.press/v139/xu21h.html

9

http://proceedings.mlr.press/v139/xu21h.html
http://proceedings.mlr.press/v139/xu21h.html


Mendil Mossina Nabhan Pasini

...

...

1

0

1

G
a
s 

q
u
a
n
ti
ty

1 T
Time

1.0

0.5

0.0

0.5

1.0
G

as
 q

u
an

ti
ty

1 T
Time

1.16

1.15

1.14

1.13

1.12

G
a
s 

q
u
a
n
ti
ty

1 T
Time

1.0

0.5

0.0

0.5

G
as

 q
u
an

ti
ty

Figure 1: Partial visual representation of the dataset: individual time series each corre-
sponding to a combination of source, product and customer (top); concatenation
of all time series to form the dataset (bottom). (Gas Quantities are numerically
transformed for confidentiality, see Section 4.1)

4.2. PUNCC

Predictive UNcertainty Calibration and Conformalization (PUNCC) is an open-source li-
brary6 that enables ad-hoc integration of Artificial Intelligence (AI) models into a theoret-
ically sound UQ framework based on CP. From a wrapper of point or interval predictors,
PIs are constructed with guaranteed coverage probability according to a selected level of
error α. PUNCC exposes two API levels following the user’s need:

• High-level API: a low-barrier-to-entry tool for fast prototyping and deployment. The
calibration and conformalization are performed by a ready-to-use wrapper around
regression models. PUNCC provides various state-of-the-art CP methods.

• Low-level API: offers extra control on each stage of the calibration and conformali-
zation. It provides generic structures to design custom nonconformity scores, data
partition schemes, and in-depth user-defined algorithms for building PIs.

The design of PUNCC is characterized by its simplicity and the modularity of its com-
ponents, enabling a flexible and broad range of uses. The core interface of the library,
namely ConformalPredictor, is in charge of the calibration and conformalization of ML
models. The high-level API provides a collection of ready-to-use ConformalPredictor sub-
classes that includes split CP (Papadopoulos et al., 2002), locally adaptive CP (Lei et al.,
2018), Conformalized Quantile Regression (CQR) (Romano et al., 2019) and EnbPI (Xu
and Xie, 2021b). More generally, the ConformalPredictor object is constructed following
the Predictor-Splitter-Calibrator paradigm —exposed by the low-level API—. It boils down
to putting together three modular components:

6. https://github.com/deel-ai/puncc
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1. Predictor: interface standardizer for AI models, making PUNCC interoperable with
various ML libraries (such as tensorflow, pytorch and scikit-learn).

2. Splitter: a strategy to assign data into fit and calibration sets, such as K-fold or a
split based on seasons for time-series.

3. Calibrator: an estimator of nonconformity scores used for building and calibrating
PIs.

Dedicated visualization and metrics modules are also provided to help build and inter-
pret the CP results. At the time of writing, PUNCC covers CP for regression. In the future,
we aim to include more other ML tasks such as classification and risk control.

4.3. Methodology of benchmark experiments

We experiment with different ways of conformalizing several candidate models to forecast
time series. First, four models are used for estimating the mean, dispersion, and quantiles
of the customers demand (Model hyperparameters are available in materials):

1. eXtreme Gradient Boosting (XGB): for mean regression (Chen and Guestrin,
2016).

2. Gradient Boosting Quantile Regression (GBQR): for quantile regression with
the pinball loss (Hastie et al., 2009).

3. Quantile Random Forests (QRF): for quantile regression using RF resampling
(Meinshausen, 2006).

4. Random Forest Mean Variance (RFMV): for mean and variance estimation
using mean squared error loss (Breiman, 2001).

During the learning phase, the parameters θ of each model are obtained through mini-
mization of the loss function L:

θ := min
θ

∑
t∈fit
L(yt, fθ(xt))

For XGB, RFMV and QRF, L corresponds to the squared error: L(y, ŷ) = (y − ŷ)2.

For GBQR, L is the pinball loss: Lα(y, ŷ) =
{

(y − ŷ) · α if y ≤ ŷ
(ŷ − y) · (1− α) if y ≥ ŷ

Then, we rely on five CP methods to build and calibrate the PIs (see Section 3):

1. Split Conformal Prediction (SCP): for constant PIs from a conditional mean
estimator.

2. Locally Adaptative Conformal Prediction (LACP): for adaptive PIs from both
conditional mean and dispersion estimators.

3. Conformalized Quantile Regression (CQR): for adaptive PIs from upper and
lower quantile estimators.

11
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Figure 2: Sequential cross-validation scheme: testing conformal prediction on a cumulative
time window.

4. Ensemble batch Prediction Interval (EnbPI): for constant PIs from a mean
estimator.

5. Adaptive Ensemble batch Prediction Interval (aEnbPI): our variant, which
builds adaptive PIs from both mean and dispersion estimators.

Finally, to ensure the robustness of the results obtained, we set up a sequential cross-
validation scheme (Hastie et al., 2009; Cerqueira et al., 2020) with five datasets, as depicted
in Figure 2. Each dataset covers the data corresponding to all 29 combinations of source,
product, and customer for a number of years. The first dataset covers the first three years
of data, the second one includes the first four years of data, and so on. The final year of
each dataset is used as the test set. Each training set is then split into fit and calibration
sets according to an 80%-20% split ratio following Sesia and Candès (2020) and preliminary
tests.

Table 1 summarizes the nine configuration evaluated empirically by combining predictors
and conformalization methods7. For the baseline configurations without conformalization,
as well as EnbPI approaches, the models are fitted on the whole training dataset. As for
all the other CP-enabled, we use the sequential cross-validation scheme as described in
Figure 2.

4.4. Results

Table 2 and Figure 3 report the averages of the metrics and their standard deviations
deriving from the 5-fold cross-validation scheme (see Figure 2).

For the Conformal Predictor approaches based on a mean predictor (XGB–SCP and
XGB–EnbPI), we observe coverage (87.8%) close to the target coverage of 90% with a
sharpness gain in PINAW for the EnbPI approach. For the UQ approaches without confor-
malization (QRF, RFMV and GBQR), we observe a rather large deviation from the target

7. The code and data supporting our findings can be made available by the authors upon request.
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Predictor Conformalization

without1 SCP2 EnbPI1 CQR2 LACP2 aEnbPI1

XGB ✓ ✓
GBQR ✓ ✓
QRF ✓ ✓
RFMV ✓ ✓ ✓

Table 1: Summary of the methods evaluated in the experiments.
1Approaches without conformalization are trained on 100% of the training set. 2Sequential

cross-validation CP procedure; 80% (resp. 20%) of the train data are assigned to the fit (resp.
calibration) set (see Figure 2).

0.10 0.11 0.12 0.13 0.14 0.15
 best

XGB-SCP

XGB-EnbPI

RFMV

RFMV-LACP

RFMV-aEnbPI

GBQR

GBQR-CQR

QRF

QRF-CQR

PINAW (Sharpness)

80 82 84 86 88 90
best 

PICP (Coverage)

Figure 3: PINAW and PICP (%) (average metric ± standard deviation) averaged over the
five datasets (target coverage: 90%).

Predictor CP approach PINAW PICP [%]
(sharpness) (coverage)

XGB SCP 0.144 ± 0.024 87.88 ± 2.86

XGB EnbPI 0.128 ± 0.016 87.82 ± 1.82

RFMV - 0.099 ± 0.005 84.05 ± 2.12

RFMV LACP 0.119 ± 0.015 87.97 ± 2.51

RFMV aEnbPI 0.110 ± 0.011 87.54 ± 1.86

GBQR - 0.107 ± 0.008 81.43 ± 3.17

GBQR CQR 0.126 ± 0.013 88.39 ± 3.10

QRF - 0.098 ± 0.007 84.98 ± 1.53

QRF CQR 0.124 ± 0.021 89.26 ± 2.35

Table 2: PINAW and PICP (%) (average metric ± standard deviation) averaged over the
five datasets (target coverage: 90%).
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Figure 4: PIs on a test example for four different CP approaches.

coverage for the non-conformalizing approaches (in the range of 81% − 85%). When we
apply a conformalization on these (QRF–CQR, RFMV–LACP, GBQR–CQR and RFMV–
aEnbPI), we obtain better coverages in the range of 87.5% − 89.2%, closer to the target
coverage.

If we analyze the PINAW metrics of conformalized approaches that have a comparable
coverage performance, we notice that:

• XGB–SCP produces constant PIs with larger (worse) PINAW performance (0.144).

• XGB–EnbPI produces a narrower constant interval (PINAW performance of 0.128)
for the same marginal coverage.

• UQ conformalized approaches (XGB–CQR, QRF–CQR, RFMV–LACP & RFMV–
aEnbPI) produce adaptive PIs with a similar PINAW performance (1.24 - 1.28)

• RFMV–aEnbPI produces the narrowest adaptive PIs (1.10) for a slightly lower mar-
ginal coverage than other CP approaches.

By analyzing the PIs in Figure 4 produced by 4 approaches XGB–EnbPI, GBQR–CQR,
QRF–CQR and RFMV–aEnbPI, we observe that:

• XGB–EnbPI shows constant-size PIs, which seems not ideal given the different vari-
ances of the series.

• GBQR–CQR, QRF–CQR and RFMV–EnbPI, on the other hand, show adaptability
with narrower PIs for the series with low variability.
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• The GBQR–CQR shows larger PIs for some series with high variability than the 2
others approaches.

4.4.1. Coverage Analysis for Operational Profiles

In industrial operations, one can be interested in the coverage related to contextual infor-
mation that have an operational interest. For example, we can analyze the performances
related to each of the 29 series which bear an operational meaning. To simplify the visu-
alization, we cluster the 29 series in three sets: low-var for the 10 series whose standard
deviation between 0.00001 and 0.2, mid-var for the 9 series with standard deviation between
0.2 and 0.38, and high-var for the 10 series with standard deviation between 0.38 and 1.0.

In Figure 5, sharpness (on the left) and coverage (on the right) are color-coded following
these partition for the 5 conformalized approaches XGB–EnbPI, RFMV–LACP, RFMV–
aEnbPI, QRF–CQR and GBQR–CQR. For XGB–EnbPI we observe, as expected, constant
PINAW on the three subsets. Contextual coverage shows undercoverage (∼ 75%) for the
series with high variance and overcoverage (∼ 98%) on the low variance series. The two
compensate each other in the marginal coverage (in black) on the whole dataset.

Conformalized UQ approaches can produce PIs of adaptive size: smaller on series with
low variability (in blue) and larger on series with high variability (in red). This adaptability
allows balancing the contextual coverage, which are all slightly closer to the target coverage.
We find the same observation about XGB–CQR, with larger intervals for series with high
variances (in red) than others approaches. Such in-depth analyses can be relevant to indus-
trial considerations, especially in the presence of operational contexts of varying relevance
(such as more or less critical systems or periods).

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
 best

XGB-EnbPI

RFMV-LACP

RFMV-aEnbPI

QRF-CQR

GBQR-CQR

PINAW (sharpness)
All
low-var
mid-var
high-var

75 80 85 90 95 100
best 

PICP (Coverage)

Figure 5: Contextual PINAW and PICP (%) (average metric ± standard deviation) aver-
aged over the five datasets (target coverage 90%). Three time series clusters are
considered: low-var, mid-var and high-var.
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5. Conclusion

In this paper, we addressed the problem of quantifying the uncertainty in gas demand
forecasting for Air Liquide. We opted for several CP methods to provide the probabilistic
guarantees needed by the on-site operators. The prediction of gas demand, formalized as a
time series regression task, is a priori inconsistent with the assumption of data exchangeabil-
ity required by some CP methods. Therefore, we designed different experiments to assess
the reliability and efficiency of state of the art CP approaches, namely the Split CP, CQR,
LACP and EnbPI. Also, a novel version of EnbPI, which we call aEnbPI, was proposed
to enhance its local adaptability. The presented results were obtained with PUNCC, a
new open-source and user-friendly library that offers ready-to-use wrappers of several CP
methods referenced in the literature.

Based on our experience, we recommend CQR on time series as a simple yet effective
starting point, to be validated empirically on in-house data. Quantile predictors are ac-
cessible to ML engineers in multiple open source implementations, and conformalization is
a lightweight post-processing step. If compatible with operational constraints, CP can be
executed and updated online following, for instance, the Online Sequential Split CP scheme
tested by Zaffran et al. (2022). Finally, we note the relevance of EnbPI and our locally
adaptive version for their ability to offer valid coverage when traditional methods fail to
attain it.

Following our results, a first on-site testing phase of several weeks is being launched,
which could see extended exploitation according to the field results. The versatility of
the CP offers many opportunities to increase the trustworthiness in AI and strengthen the
connection between state-of-the-art UQ research and reliable industrial applications.
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Appendix A. Data details

The dataset has a set of 29 features in total for each observation. There are four ordered
categorical features, three categorical ones and finally, three numerical features and a nu-
merical target (gas demand).

• Years (Ordered-categorical-1): Year as categorical feature (7 values)

• Week number (Ordered-categorical-2): Week as categorical feature (53 values)

• Categorical-0: 9 One-hot feature (one for each value)

• Categorical-1: 4 One-hot feature (one for each value)

• Categorical-2: 2 One-hot feature (one for each value)

• Ordered-categorical-2: Categorical feature (3 values)

• Ordered-categorical-3: Categorical feature (8 values)

• Numerical-0: 4 Latest values of the target (numerical lag)

• Numerical-1: 4 Latest values of a correlated signal (numerical lag)

• Numerical-2: Latest values of a correlated signal (numerical lag)

• Numerical-3: Latest values of a correlated signal (numerical lag)
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