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Abstract

Conformal prediction provides a way of testing the IID assumption, which is the standard
assumption in machine learning. A natural question is whether this way of testing is
efficient. A typical situation where the IID assumption is broken is the existence of a
changepoint at which the distribution of the data changes. We study the case of a change
from one continuous distribution to another with both distributions belonging to standard
parametric families. Our conclusion is that the conformal approach to testing the IID
assumption is efficient, at least to some degree.

Extended abstract

The conformal approach to testing the IID assumption (Vovk et al., 2005, Section 7.1)
consists in constructing a conformal test martingale (CTM), which is a nonnegative process
with initial value 1 that is a martingale under any IID distribution. Informally, the value of
a CTM is the capital of a gambler betting against the IID assumption, and its large values
provide evidence against the IID assumption.

A typical case where the IID assumption is violated is the presence of a changepoint.
It has been claimed (Vovk, 2020, 2021) that in the binary case, where the observations are
either 0 or 1, the conformal approach is efficient in that the presence of a changepoint can be
detected using CTMs. However, the binary case is of a very limited interest in applications.
In this note we show, in a simulation study, that CTMs are still efficient, at least to some
degree, beyond the binary case.

Our results are presented in Table 1. The total number of independent observations is
N = 10000 and the changepoint is at T = 5000, so that the first T observations y1, . . . , yT are
IID and the last N −T observation yT+1, . . . , yN are also IID (but typically with a different
distribution). We consider three kinds of changes: a Gaussian distribution N(µ, σ) changes
one of its parameters (mean µ or standard deviation σ), an exponential distribution Exp(λ)
changes its rate λ, or the “almost uniform” distribution AU(c) on [0, 1] with the cumulative
distribution function F1(y) = yc and parameter c > 0 changes to its “reflected” version
with the cumulative distribution function F2(y) = 1 − (1 − y)c.

Let d1 and d2 be the pre-change and post-change probability density functions, respec-
tively. As our benchmark we will use the likelihood ratio
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pre-change post-change benchmark CTM

N(0, 1) N(0, 1) 0 (0) −1.6 (1.0)

N(0, 1) N(0.5, 1) 130.8 (10.8) 126.6 (11.3)
N(0, 1) N(0.2, 1) 21.3 (4.4) 18.5 (5.2)
N(0, 1) N(0.1, 1) 5.3 (2.2) 3.0 (3.2)
N(0, 1) N(0, 1.5) 154.3 (7.9) 150.1 (8.3)
N(0, 1) N(0, 1.1) 8.8 (2.3) 6.2 (2.4)
N(0, 1) N(0, 0.9) 12.3 (2.8) 9.7 (3.6)
N(0, 1) N(0, 0.7) 125.8 (8.6) 121.8 (9.5)

Exp(1) Exp(0.7) 65.2 (7.6) 61.6 (8.1)
Exp(1) Exp(0.9) 5.6 (2.3) 3.4 (3.2)

AU(0.7) reflected 196.3 (12.8) 191.5 (13.4)
AU(0.9) reflected 19.1 (4.2) 16.3 (5.1)

Table 1: Results for Gaussian, exponential, and almost uniform distributions.

of the true distribution to a distribution (the minimax distribution in the sense of Vovk,
2021) in the IID family.

Each CTM is determined by specifying a conformity measure and a betting function.
The former will be based on the Neyman–Pearson lemma, while the latter will be in the spirit
of the plug-in approach of Fedorova et al. (2012). Namely, the conformity score of the ith
observation yi is defined as log d1(yi) − log d2(yi) (the Neyman-Pearson statistic on the log
scale), and the betting function is 1 before the change and is calculated in the following two
steps after the change. First, for each time step we calculate an empirical probability density
function f for the conformal p-values using 5000 simulations from the same true stochastic
mechanism but for different seeds for the pseudorandom number generator. Namely, the
value of f between two adjacent simulated conformal p-values is inversely proportional to
the distance between them. Second, the probability density function f is forced to be
monotonically decreasing by applying the procedure of isotonic regression to it (namely, by
applying the lsqisotonic function in MATLAB). The resulting function is then used as
the betting function. Possibly, the second step would not be needed if 5000 were replaced
by a much larger number.

When presenting our results in Table 1, we report the decimal logarithms of the final
values of the CTMs, averaged over 50 random seeds. The estimated standard deviations of
those logarithms are given in parentheses.

Notice that, when designing our CTMs, we use the full knowledge of the data-generating
mechanism. Our goal is to demonstrate that conformal testing does not impose any intrinsic
limitations, and that in principle it allows us to compete with the benchmark. Conformal
testing is the only method known at this time that provides processes that are test martin-
gales with respect to any IID distribution. Our experiments show that the gap between the
performance of conformal testing and that of the benchmark is not excessive, and so the
conformal approach to testing the IID assumption is not severely limited in its potential.
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