EVALUATION AND EXTENSION OF INDUCTIVE VENN-ABERS PREDICTIVE DISTRIBUTION Ilia Nouretdinov, James Gammerman & Daljit Rehal

ABSTRACT

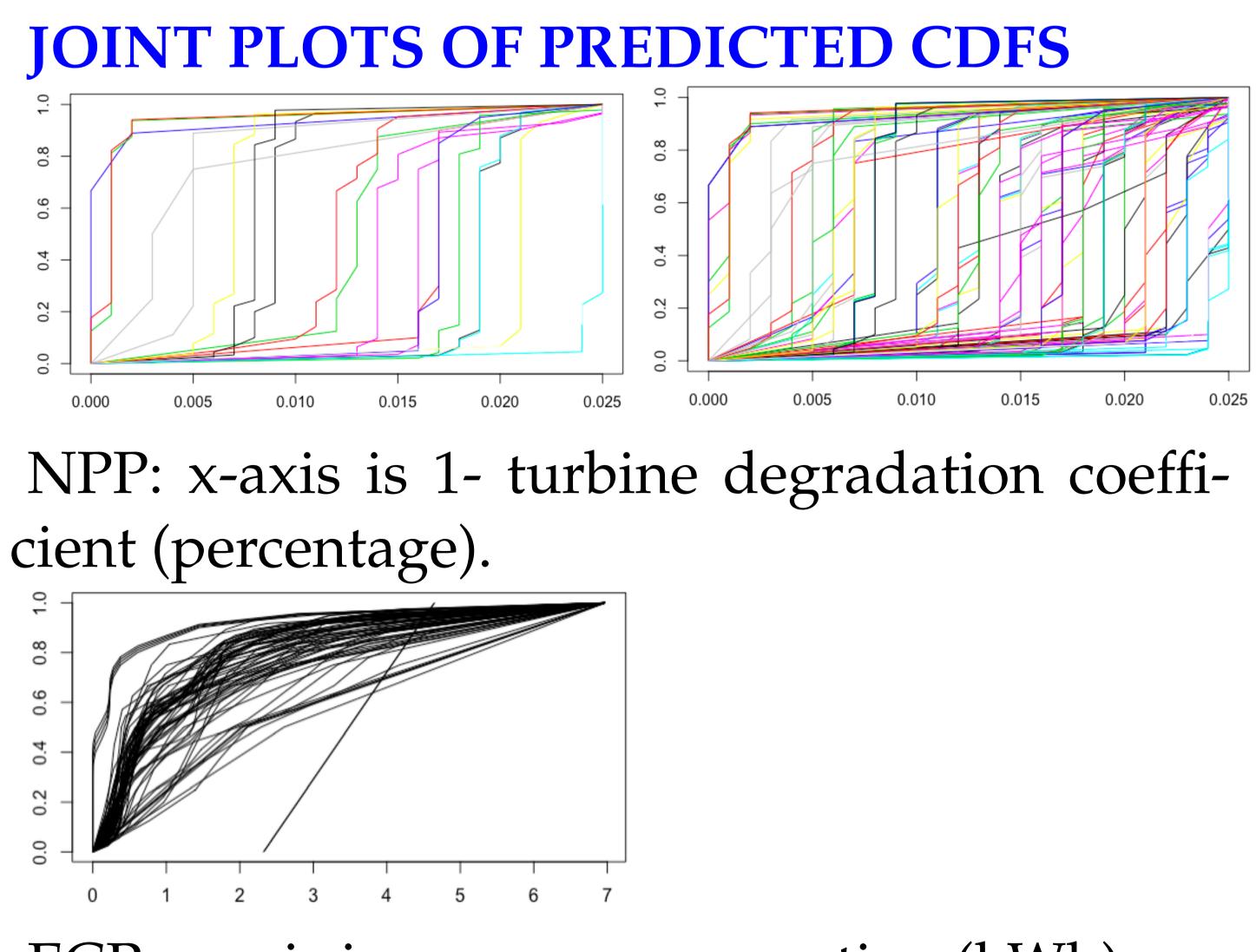
- In this work we provide further deve of Inductive Venn-Abers Predictive tion (IVAPD) for regression.
- The main contribution of this work algorithm that allows combinations lying methods.
- We also review several evaluation m the results.

ALGORITHM

INPUT: proper training set $T_P = \{(x_{-1}, y_{-1}), \dots, (x_{-r}, y_{-r})\}.$ **INPUT:** cal. set $T_C = \{(x_1, y_1), \dots, (x_n, y_n), \dots, (x_n, y_n$ INPUT: testing example x_{h+1} . INPUT: underlying predictors P^1 as for i := 1, ..., r do $s_{-i}^1 := P^1(x_i, T \setminus \{(x_{-i}, y_{-i})\})$ $s_{-i}^2 := P^2(x_i, T \setminus \{(x_{-i}, y_{-i})\})$ end for

apply bivariate isotonic optimisation: find (g_{-1}, \ldots, g_{-r}) s.t. $\sum_{i=1}^{r} (g_{-i} - y_{-i})^2 \to \min$ $(s_{-i}^1 \le s_{-j}^1) \& (s_{-i}^2 \le s_{-j}^2) \Rightarrow (g_{-i} \le g_{-j})$ for i := 1, ..., h + 1 do $s_i := P(x_i, T_P)$

find s_{-i} which is the closest to s_i $g_i := g_{-i}$


end for

let $A := \{i = 1, \dots, h : g_i = g_{h+1}\}$ $let \hat{Y} := \{y_i : i \in A\}$ **OUTPUT** (q = 0, 1):

 $\hat{P}_q\{y_{h+1} \le t\} := \frac{|\{\hat{y} \in \hat{Y} : \hat{y} \le t\}| + q}{|A| + 1}$

DA7	ГА	S	E7	٢S

relopment	1) UCI public dataset on
Distribu-	Maintenance (NPP), two lab
	a) Compressor degradation
k is a new	b) Turbine degradation coe
of under-	2) UCI public dataset on
	consumption (ECP), one lab
netrics for	evening consumption (at 18
	EVALUATION METRICS
	1.(C) Continuous Ranked Pro
	quires the ground truth).
	2.(W) Width of prediction int
$x_h, y_h)\}$	ity $(1 - \varepsilon)$.
	3.(V) Variance of distribution
and P^2	4.(P) Average diff. between C
	•We want to see which of
	agrees with C.

Propulsion Plants els:

coefficient;

efficient.

household power el: 8:00).

obability Score (re-

terval for probabil-

L.

CDFs of P_0 and P_1 . W, V, and P best

kNN UNDERLYING METHOD

Data	feat.	nei.	С	V	W	W	W	Р
					$\varepsilon = 0.25$	$\varepsilon = 0.5$	$\varepsilon = 0.75$	
NPP1	5	5	.00117	.00225	.00424	.00213	.000582	0.0493
NPP1	5	20	.00130	.00237	.00484	.00263	.000809	0.0379
NPP1	5	100	.00143	.00250	.00577	.00338	.00110	0.0189
NPP1	_	5	.000964	.00207	<mark>.00339</mark>	<mark>.00160</mark>	<mark>.000369</mark>	0.0559
NPP1	_	20	.00124	.00232	.00454	.00239	.000744	0.0442
NPP1	_	100	.00143	.00249	.00579	.00335	.00107	0.0172
NPP2	5	5	.00183	.00636	.00773	.00321	.00116	0.108
NPP2	5	20	.00237	.00635	.00964	.00450	.00166	0.0880
NPP2	5	100	.00379	.00729	0.0153	.00841	.00329	0.0507
NPP2	_	5	<mark>.00179</mark>	.00642	<mark>.00757</mark>	.00283	.000954	0.112
NPP2	_	20	.00239	.00648	.00993	.00449	.00158	0.0925
NPP2	_	100	.00415	.00747	0.170	.00989	.00399	0.0294
ECP	5	5	0.607	1.780	2.418	0.973	0.425	0.166
ECP	5	20	0.624	1.751	2.365	0.923	0.398	0.150
ECP	5	100	0.591	1.657	<mark>2.211</mark>	<mark>0.872</mark>	<mark>0.380</mark>	<mark>0.123</mark>
ECP	20	5	0.622	1.797	2.496	1.009	0.437	0.168
ECP	20	20	0.608	1.764	2.380	0.969	0.422	0.157
ECP	20	100	0.591	1.675	2.287	0.934	0.436	0.137
ECP	_	5	0.613	1.825	2.485	0.995	0.450	0.178
ECP	_	20	0.604	1.752	2.343	0.942	0.402	0.153
ECP		100	<mark>0.586</mark>	1.692	2.276	0.917	0.419	0.136

• W shows the best agreement with C.

COMPARISON OF SINGLE *k***-VALUE vs TWO COMBINED**

Data	feat.	nei.	С	V	W	W	W	Р
					$\varepsilon = 0.25$	$\varepsilon = 0.5$	$\varepsilon = 0.75$	
NPP2		5	.00318	.00793	0.0137	.00679	.00305	0.208
NPP2		10	.00398	.00789	0.0150	.00708	<mark>.00251</mark>	0.130
NPP2	_	20	.00458	.00814	0.0169	.00819	.00267	0.0778
NPP2	_	100	.00442	.00783	0.0170	.00824	.00301	0.0274
NPP2		5,10	.00306	.00835	0.0146	.00735	.00364	0.247
NPP2		5,20	.00301	.00831	0.0150	.00728	.00332	0.232
NPP2		10,20	.00401	.00811	0.0155	.00745	.00271	0.151
NPP2		5,100	.00298	.00744	<mark>0.0131</mark>	<mark>.00655</mark>	.00263	0.144
NPP2	_	10,100	.00389	.00773	0.0153	0.t00759	.00279	0.0973
NPP2	_	20,100	.00448	.00798	0.0170	.00806	.00273	0.0485

• Typically, a combination works better.

Acknowledgements. AstraZeneca, Mitie, RHUL, Centrica.

Reference

[1] Nouretdinov, I., Volkhonskiy, D., Lim, P., Toccaceli, P., Gammerman, A., 2018. Inductive Venn-Abers Predictive Distribution. Proceedings of Conformal Prediction with Applications (COPA 2018). Vol. 91, p. 1–22.

ECP: x-axis is energy consumption (kWh).